
gmm_diag and gmm_full: C++ classes for multi-threaded
Gaussian mixture models and Expectation-Maximisation

Conrad Sanderson †�∗ and Ryan Curtin ‡∗

† Data61, CSIRO, Australia
‡ Symantec Corporation, USA
� University of Queensland, Australia
∗ Arroyo Consortium

Abstract

Statistical modelling of multivariate data through a convex mixture of Gaussians, also known as a Gaussian
mixture model (GMM), has many applications in fields such as signal processing, econometrics, and pattern
recognition [2]. Each component (Gaussian) in a GMM is parameterised with a weight, mean vector
(centroid), and covariance matrix.

gmm_diag and gmm_full are C++ classes which provide multi-threaded (parallelised) implementations of
GMMs and the associated Expectation-Maximisation (EM) algorithm for learning the underlying parameters
from training data [5, 6]. The gmm_diag class is specifically tailored for diagonal covariance matrices (all
entries outside the main diagonal in each covariance matrix are assumed to be zero), while the gmm_full class
is tailored for full covariance matrices. The gmm_diag class is typically much faster to train and use than the
gmm_full class, at the potential cost of some reduction in modelling accuracy.

The interface for the gmm_diag and gmm_full classes allows the user easy and flexible access to the
trained model, as well as control over the underlying parameters. Specifically, the two classes contain
functions for likelihood evaluation, vector quantisation, histogram generation, data synthesis, and parameter
modification, in addition to training (learning) the GMM parameters via the EM algorithm. The classes use
several techniques to improve numerical stability and promote convergence of EM based training, such as
keeping as much as possible of the internal computations in the log domain, and ensuring the covariance
matrices stay positive-definite.

To achieve multi-threading, the EM training algorithm has been reformulated into a MapReduce-like
framework [4] and implemented with the aid of OpenMP pragma directives [3]. As such, the EM algorithm
runs much quicker on multi-core machines when OpenMP is enabled during compilation (for example, using
the -fopenmp option in GCC and clang compilers).

The gmm_diag and gmm_full classes are included in version 7.960 of the Armadillo C++ library [7], with
the underlying mathematical details described in [8]. The documentation for the classes is available online:
http://arma.sourceforge.net/docs.html#gmm_diag

For an instance of the gmm_diag or gmm_full class named as M, an overview of its member functions and
variables is given below; all vectors, matrices and cubes refer to corresponding objects from the Armadillo
library; the word “heft” is explicitly used in the classes as a shorter version of “weight”, while keeping the
same meaning with the context of GMMs. Figure 1 contains a complete C++ program which demonstrates
usage of the gmm_diag class.

Published as:
Conrad Sanderson and Ryan Curtin.
gmm_diag and gmm_full: C++ classes for multi-threaded Gaussian mixture models and Expectation-Maximisation.
Journal of Open Source Software, Vol. 2, 2017.
DOI: 10.21105/joss.00365

http://arma.sourceforge.net/docs.html#gmm_diag

• M.log_p(V)
return a scalar (of type double) representing the log-likelihood of column vector V

• M.log_p(V, g)
return a scalar (of type double) representing the log-likelihood of column vector V, according to Gaussian
with index g (specified as an unsigned integer of type uword)

• M.log_p(X)
return a row vector (of type rowvec) containing log-likelihoods of each column vector in matrix X

• M.log_p(X, g)
return a row vector (of type rowvec) containing log-likelihoods of each column vector in matrix X, according
to Gaussian with index g (specified as an unsigned integer of type uword)

• M.sum_log_p(X)
return a scalar (of type double) representing the sum of log-likelihoods of all column vectors in matrix X

• M.sum_log_p(X, g)
return a scalar (of type double) representing the sum of log-likelihoods of all column vectors in matrix X,
according to Gaussian with index g (specified as an unsigned integer of type uword)

• M.avg_log_p(X)
return a scalar (of type double) representing the average log-likelihood of all column vectors in matrix X

• M.avg_log_p(X, g)
return a scalar (of type double) representing the average log-likelihood of all column vectors in matrix X,
according to Gaussian with index g (specified as an unsigned integer of type uword)

• M.assign(V, dist_mode)
return an unsigned integer (of type uword) representing the index of the closest mean (or Gaussian) to
vector V; the parameter dist_mode is one of:

eucl_dist Euclidean distance (takes only means into account)
prob_dist probabilistic “distance”, defined as the inverse likelihood (takes into account means, covariances, hefts)

• M.assign(X, dist_mode)
return a row vector of unsigned integers (of type urowvec) containing the indices of the closest means (or
Gaussians) to each column vector in matrix X; parameter dist_mode is eucl_dist or prob_dist, as per the
.assign() function above

• M.raw_hist(X, dist_mode)
return a row vector of unsigned integers (of type urowvec) representing the raw histogram of counts;
each entry is the number of counts corresponding to a Gaussian; each count is the number times the
corresponding Gaussian was the closest to each column vector in matrix X; parameter dist_mode is
eucl_dist or prob_dist, as per the .assign() function above

• M.norm_hist(X, dist_mode)
similar to the .raw_hist() function above; return a row vector (of type rowvec) containing normalised
counts; the vector sums to one; parameter dist_mode is either eucl_dist or prob_dist, as per the .assign()
function above

• M.generate()
return a column vector (of type vec) representing a random sample generated according to the model’s
parameters

• M.generate(N)
return a matrix (of type mat) containing N column vectors, with each vector representing a random sample
generated according to the model’s parameters

• M.n_gaus()
return an unsigned integer (of type uword) containing the number of means/Gaussians in the model

• M.n_dims()
return an unsigned integer (of type uword) containing the dimensionality of the means/Gaussians in the
model

• M.reset(n_dims, n_gaus)
set the model to have dimensionality n_dims, with n_gaus number of Gaussians, specified as unsigned
integers of type uword; all the means are set to zero, all diagonal covariances are set to one, and all the hefts
(weights) are set to be uniform

• M.save(filename)
save the model to a file and return a bool indicating either success (true) or failure (false)

• M.load(filename)
load the model from a file and return a bool indicating either success (true) or failure (false)

• M.means
read-only matrix (of type mat) containing the means (centroids), stored as column vectors

• M.dcovs [only in gmm_diag]
read-only matrix (of type mat) containing the diagonal covariances, with the set of diagonal covariances
for each Gaussian stored as a column vector; applicable only to the gmm_diag class

• M.fcovs [only in gmm_full]
read-only cube containing the full covariance matrices, with each covariance matrix stored as a slice within
the cube; applicable only to the gmm_full class

• M.hefts
read-only row vector (of type rowvec) containing the hefts (weights)

• M.set_means(X)
set the means (centroids) to be as specified in matrix X (of type mat), with each mean (centroid) stored as a
column vector; the number of means and their dimensionality must match the existing model

• M.set_dcovs(X) [only in gmm_diag]
set the diagonal covariances to be as specified in matrix X (of type mat), with the set of diagonal covariances
for each Gaussian stored as a column vector; the number of diagonal covariance vectors and their
dimensionality must match the existing model; applicable only to the gmm_diag class

• M.set_fcovs(X) [only in gmm_full]
set the full covariances to be as specified in cube X, with each covariance matrix stored as a slice within
the cube; the number of covariance matrices and their dimensionality must match the existing model;
applicable only to the gmm_full class

• M.set_hefts(V)
set the hefts (weights) of the model to be as specified in row vector V (of type rowvec); the number of hefts
must match the existing model

• M.set_params(means, covs, hefts)
set all the parameters at the same time; the type and layout of the parameters is as per the
.set_hefts(), .set_means(), .set_dcovs() and .set_fcovs() functions above; the number of Gaussians
and dimensionality can be different from the existing model

• M.learn(data, n_gaus, dist_mode, seed_mode, km_iter, em_iter, var_floor, print_mode)
learn the model parameters via the k-means and/or EM algorithms, and return a boolean value, with true
indicating success, and false indicating failure; the parameters have the following meanings:

- data
matrix (of type mat) containing training samples; each sample is stored as a column vector

- n_gaus
set the number of Gaussians to n_gaus; to help convergence, it is recommended that the given data matrix
(above) contains at least 10 samples for each Gaussian

- dist_mode
specifies the distance used during the seeding of initial means and k-means clustering:
eucl_dist Euclidean distance
maha_dist Mahalanobis distance, which uses a global diagonal covariance matrix

estimated from the given training samples

- seed_mode
specifies how the initial means are seeded prior to running k-means and/or EM algorithms:

keep_existing keep the existing model (do not modify the means, covariances and hefts)
static_subset a subset of the training samples (repeatable)
random_subset a subset of the training samples (random)
static_spread a maximally spread subset of training samples (repeatable)
random_spread a maximally spread subset of training samples (random start)

Note that seeding the initial means with static_spread and random_spread can be more time consuming
than with static_subset and random_subset; these seed modes are inspired by the so-called k-means++
approach [1], with the aim to improve clustering quality.

- km_iter
the maximum number of iterations of the k-means algorithm; this is data dependent, but typically 10
iterations are sufficient

- em_iter
the maximum number of iterations of the EM algorithm; this is data dependent, but typically 5 to 10
iterations are sufficient

- var_floor
the variance floor (smallest allowed value) for the diagonal covariances; setting this to a small non-zero
value can help with convergence and/or better quality parameter estimates

- print_mode
boolean value (either true or false) which enables/disables the printing of progress during the k-means
and EM algorithms

#include <armadillo>

using namespace arma;

int main()
{
// create synthetic data containing
// 2 clusters with normal distribution

uword d = 5; // dimensionality
uword N = 10000; // number of samples (vectors)

mat data(d, N, fill::zeros);

vec mean1 = linspace<vec>(1,d,d);
vec mean2 = mean1 + 2;

uword i = 0;

while(i < N)
{
if(i < N) { data.col(i) = mean1 + randn<vec>(d); ++i; }
if(i < N) { data.col(i) = mean1 + randn<vec>(d); ++i; }
if(i < N) { data.col(i) = mean2 + randn<vec>(d); ++i; }
}

// model the data as a diagonal GMM with 2 Gaussians

gmm_diag model;

bool status = model.learn(data, 2, maha_dist, random_subset, 10, 5, 1e-10, true);

if(status == false) { cout << "learning failed" << endl; }

model.means.print("means:");

double overall_likelihood = model.avg_log_p(data);

rowvec set_likelihood = model.log_p(data.cols(0,9));
double scalar_likelihood = model.log_p(data.col(0));

uword gaus_id = model.assign(data.col(0), eucl_dist);
urowvec gaus_ids = model.assign(data.cols(0,9), prob_dist);

urowvec histogram1 = model.raw_hist (data, prob_dist);
rowvec histogram2 = model.norm_hist(data, eucl_dist);

model.save("my_model.gmm");

mat modified_dcovs = 2 * model.dcovs;

model.set_dcovs(modified_dcovs);

return 0;
}

Figure 1: An example C++ program which demonstrates usage of a subset of functions available in the
gmm_diag class.

References

[1] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. ACM-SIAM Symposium on
Discrete Algorithms, pages 1027–1035, 2007.

[2] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[3] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming.
MIT Press, 2007.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[5] G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley & Sons, 2nd edition, 2008.

[6] T. K. Moon. Expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6):47–60, 1996.

[7] C. Sanderson and R. Curtin. Armadillo: a template-based C++ library for linear algebra. Journal of Open
Source Software, 1:26, 2016.

[8] C. Sanderson and R. Curtin. An open source C++ implementation of multi-threaded Gaussian mixture
models, k-means and expectation maximisation. International Conference on Signal Processing and
Communication Systems, 2017.

