
CARDPEEK 0.8 Reference Manual

Alain Pannetrat <L1L1@gmx.com>
February 2013

revision 1

1

Table of Contents
Chapter 1 Presentation..6
Chapter 2 Installation..8

2.1 Compiling and installing under Linux..8
2.2 Compiling and installing under Mac OS X...9
2.3 Installing under Windows..9
2.4 Related files and initial setup...9

2.4.1 Default installation..9
2.4.2 Changing the default installation directory..10

2.5 Choosing a smart card reader...10
Chapter 3 Using Cardpeek...12

3.1 Quick start..12
3.2 User interface...13
3.3 Card view..13
3.4 The reader tab..14
3.5 The logs tab..15
3.6 The one-line command input field..15
3.7 Card-reader selection upon start-up...15

Chapter 4 Card analysis tools..16
4.1 Atr...16

4.1.1 Overview..16
4.1.2 General notes..17

4.2 Belgian eID...17
4.2.1 Overview...17
4.2.2 General notes..17

4.3 Calypso...17
4.3.1 Overview...18
4.3.2 Implementation notes...18

4.4 emv...18
4.4.1 Overview...18
4.4.2 Implementation notes...19

4.5 e-passport..19
4.5.1 Overview...19
4.5.2 Implementation notes..19

4.6 GSM/SIM...19
4.6.1 Overview...19
4.6.2 General notes...20

4.7 moneo..20
4.7.1 Overview...20
4.7.2 Implementation notes...20

2

4.8 Tachograph driver cards...20
4.8.1 Overview..20
4.8.2 Implementation notes...20

4.9 vitale 2...20
4.9.1 Overview...20
4.9.2 Notes..20

4.10 Adding your own scripts...20
Chapter 5 Programming Cardpeek scripts...22

5.1 5.1 Hello world...22
5.2 Basic communication with a smart card..23
5.3 Representing card data in a tree structure...25

Chapter 6 Development library...27
6.1 The bit library..27

6.1.1 bit.AND...27
6.1.2 bit.OR..27
6.1.3 bit.XOR...27
6.1.4 bit.SHL...28
6.1.5 bit.SHR...28

6.2 The bytes library...28
6.2.1 Operators on bytestrings...29
6.2.2 bytes.clone...29
6.2.3 bytes.concat...30
6.2.4 bytes.convert...30
6.2.5 bytes.format...31
6.2.6 bytes.get..31
6.2.7 bytes.ipairs...32
6.2.8 bytes.is_printable..32
6.2.9 bytes.new...33
6.2.10 bytes.new_from_chars..33
6.2.11 bytes.pad_left...34
6.2.12 bytes.pad_right..34
6.2.13 bytes.reverse...34
6.2.14 bytes.set..35
6.2.15 bytes.sub...35
6.2.16 bytes.tonumber..36
6.2.17 bytes.width...36

6.3 The asn1 library...36
6.3.1 asn1.enable_single_byte_length...37
6.3.2 asn1.join...37
6.3.3 asn1.split..38
6.3.4 asn1.split_length...38
6.3.5 asn1.split_tag...38

3

6.4 The card library...39
6.4.1 card.connect...39
6.4.2 card.disconnect...40
6.4.3 card.get_data...40
6.4.4 card.info...40
6.4.5 card.last_atr...41
6.4.6 card.make_file_path...41
6.4.7 card.read_binary...42
6.4.8 card.read_record...43
6.4.9 card.select..43
6.4.10 card.send..44
6.4.11 card.warm_reset..45

6.5 The crypto library..45
6.5.1 crypto.create_context..45
6.5.2 crypto.decrypt..46
6.5.3 crypto.digest...47
6.5.4 crypto.encrypt..47
6.5.5 crypto.mac..47

6.6 The iconv library...48
6.6.1 iconv.open..48
6.6.2 iconv.iconv...48

6.7 The nodes library..49
6.7.1 nodes.append...49
6.7.2 nodes.attributes...50
6.7.3 nodes.children..51
6.7.4 nodes.find...51
6.7.5 nodes.find_first..52
6.7.6 nodes.from_xml...52
6.7.7 nodes.get_attribute..52
6.7.8 nodes.parent..53
6.7.9 nodes.remove...53
6.7.10 nodes.root...54
6.7.11 nodes.set_attribute...54
6.7.12 nodes.to_xml..54

6.8 The ui library...55
6.8.1 ui.question..55
6.8.2 ui.readline..56
6.8.3 ui.load_view..56
6.8.4 ui.save_view..56

6.9 The log library...57
6.9.1 log.print..57

6.10 Other libraries..57

4

6.10.1 The treeflex library...57
6.10.2 The country_codes and currency_codes libraries..57
6.10.3 The en1545 library...57

Chapter 7 File format...59
Chapter 8 License...61

5

Chapter 1

Presentation

CARDPEEK is a program that reads the contents of smart cards. This open-source tool has a
GTK GUI and can be extended with the LUA programming language. It requires a PCSC
card reader to communicate with a smart card, either in contact or contactless mode.

Smart cards are becoming ubiquitous in our everyday life. We use them for payment,
transport, in mobile telephones and many other applications. These cards often contain a
lot of personal information such as, for example, our last purchases or our last journeys in
public transport.

CARDPEEK’s goal is to allow you to access all this personal information. As such, you can
be better informed about the data that is collected about you.

CARDPEEK explores ISO 7816 compliant smart cards and represents their content in an
organized tree format that roughly follows the structure it has inside the card, which is also
similar to a classical file-system structure.

As of version 0.8.2, this tool is capable of reading the contents of the following types of
cards:

• EMV "chip and PIN" bank cards, including:

◦ VISA, MasterCard, CB and UK Post Office Account contact cards;

◦ PayWave (VISA) and PayPass (MasterCard) contactless cards;

• Electronic/Biometric passports, which have an embedded contactless chip;

• The Belgian eID card;

• Calypso transport cards including:

◦ Navigo transport cards used in Paris;

◦ MOBIB cards used in Brussels;

◦ RavKav cards used in Israel;

◦ VIVA cards used in Lisbon;

• GSM SIM cards (without USIM data used in recent cards);

Chapter 1 Presentation 6

• Vitale 2, the French health card;

• Moneo, the French electronic purse;

• Driver tachograph cards;

It can also read the following cards with limited interpretation of data:

• Some Mifare Classic compatible cards (such as the Thalys card);

Some important card types are missing or need further development, however, this
application can be modified and extended easily to your needs with the embedded LUA
scripting language. For more information on the LUA project see http://www.lua.org/.

This software has been tested with traditional PCSC card readers (such as the
Gemalto™ PC TWIN) as well as contactless or dual-interface PCSC readers (such as the
Omnikey™ 5321).

Chapter 1 Presentation 7

Chapter 2

Installation

CARDPEEK is designed to work under GNU/Linux with GTK+ and has been successfully
ported under Windows.

CARDPEEK can be compiled from source using configure a n d make. It is being

developed under Linux Debian and has been reported to work under Ubuntu, Centos,
Fedora, Suse and FreeBSD, as well as Raspbian on the Raspberry Pi.

The Windows version is distributed as a self installing binary package. It can also be
compiled under MinGW/MSYS with the custom Makefile provided in the source code
(Makefile.win32).

Of course, a smart card reader is needed to take full advantage of this software.

2.1 Compiling and installing under Linux

Instructions:

1. Make sure you have the following development packages installed:

• libgtk+ 3.0, version 3.5.4 or above (http://www.gtk.org)

• libglib 2.0, version 2.32 or above.

• liblua 5.2 (http://www.lua.org)

• libpcsclite (http://pcsclite.alioth.debian.org/)

• libssl (http://www.openssl.org/)

• libcurl (http://libcurl.org)
• libiconv

2. Unpack the source if needed and change directory to the source directory.

3. Type ‘./configure’

4. Type ‘make’

5. Type ‘make install’ (usually as root) to install install CARDPEEK in the proper

Chapter 2 Installation 8

system directories.

Notes:

1. On a Debian/Ubuntu system, these necessary packages are all available through
package management tools such as apt/aptitude.

2. The last step (make install) is optional, as you can run CARDPEEK directly from

the source directory.

2.2 Compiling and installing under Mac OS X

Starting from version 0.8, CARDPEEK should compile on Mac OS X following the same steps
outlined for Linux. Note however that this requires setting up the correct development
environment and an X11 server (Xquartz).

Cardpeek has notably been successfully compiled under Mac OS X Lion (10.7.5) with
the following tools/environment:

1. Xcode 4.6.2 Command Line Tools.

2. Homebrew (http://mxcl.github.io/homebrew/), used to install libgtk+, liblua and
libssl.

3. XQuartz (http://xquartz.macosforge.org/).

2.3 Installing under Windows

CARDPEEK works both on windows 32bits and 64bits platforms, in 32 bit compatibility
mode.

Instructions:

1. Download the self installing binary setup program (cardpeek-x.xx-win32-

setup.exe where x.xx is the version number of CARDPEEK).

2. Follow the instructions.

CARDPEEK can also be compiled from source with MinGW/MSYS, but this is a more
complicated approach due to some current shortcomings of the windows port. You should
use the dedicated Makefile (make -f Makefile.win32) and manually copy the contents

of the directory dot_cardpeek_dir/ from the source into the directory %USERPROFILE

%/.cardpeek).

2.4 Related files and initial setup

2.4.1 Default installation

In the following discussion, the terms “home directory” will refer to the traditional home
directory on a Unix system (as indicated by the $HOME environment variable) or the

%USERPROFILE% directory on a MS-Windows systems. The first time CARDPEEK is run it

Chapter 2 Installation 9

will attempt to create the .cardpeek/ directory in your home directory. This is normal.

For Windows users this directory will be created during installation.

The ./cardpeek directory will contain 5 elements: cardpeekrc.lua, config.lua,

the scripts/ and replay/ directories and a version file. The cardpeekrc.lua allows

you to run commands automatically when the program starts and the config.lua file is

used to store configuration information. The scripts/ directory contains all the scripts

needed to explore smart cards. These scripts are LUA files (such as “emv.lua” or

“calypso.lua”) and all show up in the ‘analyzer’ menu of CARDPEEK (without their

extension ‘.lua’). If you add any LUA file to this directory, it will therefore also appear in

the menu. The scripts/ directory contains three subdirectories: lib/, etc/ and

calypso/. lib/ and etc/ hold a few LUA files containing frequently used commands or

data items that are shared among the card processing scripts. The directory calypso/

holds country and region specific scripts for calypso cards. The replay/ directory is used

to save data for card emulation purposes.

Each time the program runs, it creates a file .cardpeek.log in your home directory.

This file contains a copy of the messages displayed in the “log” tab of the application (see
next chapter).

2.4.2 Changing the default installation directory

Under Unix-like systems, if you want to change the directory used by CARDPEEK to
store and read scripts from $HOME/.cardpeek to something else, you may do so by setting

the environment variable CARDPEEK_DIR to point to an existing alternative directory of

your choice.

2.5 Choosing a smart card reader

There are many smart card readers available on the market, and their compatibility with
different contact or contactless cards will depend on many parameters, such as:

• The OS you are using (Linux, Windows, 32bit or 64bit, etc.)

• The smart card driver on the OS.

• The firmware of the smart card reader.

• The smart card itself.

As an example, the OMNIKEY 5321 USB dual-interface reader comes into at least 2
firmware versions. Under MS Windows, a reader with firmware 5.10 fails to connect with
some Calypso e-ticketing cards through the contact interface, but works under Linux with
default PCSC drivers. However, on Linux, the contactless interface only seems to work with
the OMNIKEY drivers and fail to operate with the PCSC standard drivers. Because of all
these reasons, to our best knowledge there is no perfect smart card reader.

Chapter 2 Installation 10

The following smart card readers have been reported to work with CARDPEEK and are
provided here as an indication (without any guaranty):

Reader Type Notes

BROADCOM BCM5880 Contact Only on Windows.

GEMALTO PC Twin USB Contact -

OMNIKEY 5321 USB Contact &
contactless

For Navigo cards, the Omnikey proprietary
driver doesn't work. However the default PCSC
driver seems to work on Linux.

SPRINGCARD Prox'N'Roll PC/SC Contactless -

WATCHDATA W1981 Contact Offered for 7 euros in subway stations in Paris.

TEO XIRING Contact Reported to work on Linux

Chapter 2 Installation 11

Chapter 3

Using CARDPEEK

3.1 Quick start

To experiment with CARDPEEK, you may start with your EMV “PIN and chip” smart card
for example, by following these steps:

1. Start CARDPEEK.

2. Select your PCSC card reader in the first dialog box.

3. Insert your EMV “PIN and chip” card in the card reader.

4. Select emv in the analyzer menu. This will run the default EMV script.

Chapter 3 Using Cardpeek 12

Illustration 1: Main Window of CARDPEEK

5. View the results in the “card data” tab.

On many bank cards, you will discover a surprising amount of transaction log data (scroll
down to the “log data” in the card view).

3.2 User interface

The user interface is divided in four main parts: 3 tabs and a one-line command input
field.

Each one of the 3 tabs proposes a different view of card related information:

• Card view: shows card data extracted from a card in a structured tree form.

• Reader: shows raw binary data exchanged between the host PC and the card

reader.

• Logs: displays a journal of application events, mainly useful for debugging

purposes.

3.3 Card view

The card view tab is the central user interface component of CARDPEEK.

It represents the data extracted from a card in a structured tree from. This tree
structure is initially blank and is entirely constructed by the LUA scripts that are executed
(see Chapter 4). This tree can be saved and loaded in XML format (see Chapter 7) using
the buttons in the toolbar.

The card view tab offers the following toolbar buttons:

Analyze Clicking on this button spawns a menu from which a card
analysis script can be chosen (see next chapter).

Clear This button clears the card view.

Open This button allows to load a previously saved card view from an
XML file.

Save As This button allows to save the current card view into an XML
file.

About This button displays a very brief message about CARDPEEK.

Quit This button quits the application.

The card view data is represented in 3 columns. The first column displays the nodes of
the card tree view in a hierarchical structure similar to a typical file directory tree browser,
where each node has a name, composed of a label and an ID. The second column displays
the size of the node data, most frequently expressed in bytes. Finally, the third column
displays the node data itself. The node data can either be represented in “raw”

Chapter 3 Using Cardpeek 13

(hexadecimal) form or in a more user friendly interpreted “alternative” form, such as a
text, or a date for example. By default, the card view will display node data in an
interpreted “alternative” format if it exists. By clicking on the third column title, it is
possible to switch between both “raw” and interpreted “alternative” data representations.

The card view tab has a right-click activated context menu featuring two commands:

expand all This expands the contents of the tree structure
starting from the currently highlighted node.

show raw value
or

show interpreted value

This is equivalent to clicking on on the third column
title to switch between both “raw” and interpreted”
data representations.

3.4 The reader tab

The reader tab displays the raw binary data exchanges between the card reader and the
card itself. This data is composed of card command APDUs1, card response APDUs and
card reset indicators. Command APDUs are represented by a single block of data, while
card responses contain two elements: a card status word and card response data.

One interesting feature of the card reader tab is the ability to save the APDU exchanges
between the card reader and the smart card in a file that can later be used to emulate the
card. Once this data is saved in a file (with the .clf extension) and placed in the

.cardpeek/replay/ folder, it will appear as a choice in the smart card reader selection

window that appears when CARDPEEK is launched. The name of the file will be prefixed by
“replay://” in the card selection window. Selecting such a card data file allows to re-run the
script on the previously recorded APDU/response data instead of a real smart card
inserted in the reader. This is very useful for testing and debugging card scripts without
relying on a real smart card inserted in the reader.

The reader tab offers the following toolbar buttons:

Connect This button establishes a connexion between the card and the card
reader.

Reset This button performs a warm reset of the card.

Disconnect This button closes the connexion between the card and the card
reader.

Clear This button clears the APDU/response data displayed in the
window.

1 APDU: Application Protocol Data Unit, a sequence of bytes describing a message exchanged between the
smart card and the reader.

Chapter 3 Using Cardpeek 14

Save as This button allows to save the displayed APDU/response data,
either Save as for future examination or to be replayed as an
emulation of a real card.

“Connect”, “Reset” and “Disconnect” operations are usually automatically done by the card
scripts. However, it is occasionally useful to manually force the execution of these
commands.

3.5 The logs tab

The logs tab keeps track of messages emitted by the application or the script being run.
These messages are useful for monitoring and for debugging purposes. The last message
also appears at the bottom of the screen in the status bar.

3.6 The one-line command input field

The one-line command input field at the bottom of the window allows to type LUA
commands that will be directly executed by the application. This is useful for testing some
ideas quickly or for debugging purposes.

3.7 Card-reader selection upon start-up

When the program starts, you’ll be asked to choose a card reader. This will give you 3 main
choices :

1. Select a PCSC card reader to use: You may have several of PCSC card readers
attached to your computer. Card-readers are usually identified by their name,
preceded by pcsc://.

2. Select a file containing previously recorded smart card APDU/response data: This
allows to replay a smart card transaction that was previously recorded by CARDPEEK,
and is quite convenient for script debugging purposes. Each time an APDU is sent to
the card, CARDPEEK will answer with the previously recorded response data (or
return an error if the query is new). Files containing previously recorded
APDU/response data are identified by a file name, preceded by replay://.

3. Select “none”: Selecting none is useful if you do not wish to use a card reader at all,
for example if you only want to load and examine card data that was previously
saved in XML format.

Chapter 3 Using Cardpeek 15

Chapter 4

Card analysis tools

As shown on Illustration 2, CARDPEEK provides several card analysis tools, which all appear
in the "Analyzer" menu. These tools are actually “scripts” written in the LUA language, and
CARDPEEK allows you to add your own scripts easily. Though you are unlikely to damage a
smart card with these tools, these scripts are provided WITHOUT ANY WARRANTY.

4.1 Atr

4.1.1 Overview

This script simply prints the ATR (Answer To Reset) of the card.

Chapter 4 Card analysis tools 16

Illustration 2: The Analyzer menu

4.1.2 General notes

This is a very basic script that should always work. It attempts to identify the card with an
internal ATR database (smartcard_list.txt), which is automatically updated online on a
regular basis.

In the future this script will be enhanced with a more detailed analysis of the ATR.

4.2 Belgian eID

4.2.1 Overview

This script analyses the contents of the Belgian eID card.

4.2.2 General notes

The cardholder's picture is shown if available.

4.3 Calypso

Chapter 4 Card analysis tools 17

Illustration 3: Reading a Navigo card (Paris)

4.3.1 Overview

This script provides an analysis of Calypso public transport cards used in many cities.

4.3.2 Implementation notes

The following calypso cards have been reported to work with this script: Navigo/Paris,
MOBIB/Brussels, RavKav/Israel and Korrigo/Rennes (partial support).

You will notice that these transport cards keep an event log describing at least 3 of the
last stations/stops you have been through. This event log, which could pose a privacy risk,
is not protected by any access control means and is freely readable.

For Navigo cards, this script provides enhanced “event log” analysis notably with
subway/train station names, as illustrated in Figure 4. It has been successfully tested on
Navigo Decouverte, Navigo and Navigo Integrale cards.

You must use the contact interface to read a Navigo card, because they cannot be read
with a normal contactless card reader (these cards use a specific protocol that is not fully
compatible with ISO 14443 B).

The script also reads MOBIB cards used in Brussels, with enhanced “event log”
analysis. One unusual feature of the MOBIB card is the possibility to access the name and
date of birth of the card holder. MOBIB cards are fully compatible with ISO 14443 card
readers.

The calypso script reads all the files it can find on the card and extracts the raw binary
data it finds. The interpretation of that binary data varies from country to country, and
even from region to region.

Once the data is loaded, the script attempts to automatically detect the country and
region the card comes from. The country is identified by a number following ISO 3166-1,
but without leading zeros. The region code is also a numerical value. The script will then
look into the calypso directory for a script called “cXXX.lua” where XXX represents the
country code. If found, this extra script will be executed. Next the main script will look
again in the calypso directory for a script called “cXXXnYYY.lua” where XXX

represents the country code and YYY the region code. If found, this script will also be
executed.

Currently country/region detection is based on some simple heuristics and does not
work for all calypso cards.

Programmers wishing to tailor the behavior of the calypso script to their own country
or region can thus add their own file in the calypso directory.

4.4 emv

4.4.1 Overview

This script provides an analysis of EMV banking cards used across the world.

Chapter 4 Card analysis tools 18

4.4.2 Implementation notes

This script will ask you if you want to issue a “Get Processing Option” (GPO) command for
each application on the card. Since some cards have several applications (e.g. a national
and an international application), this question may be asked twice or more. This
command is needed to allow full access to all freely readable information in the card. As a
side effect, issuing this command will increase an internal counter inside the card called
ATC (Application Transaction Counter).

You will notice that many of these bank cards keep a “transaction log” of the last
transactions you have made with your card. Some banks cards keep way over a hundred
transactions that are freely readable, which brings up some privacy issues.

4.5 e-passport

4.5.1 Overview

This script provides an analysis of data in an electronic/biometric passport, through a
contactless interface.

You will need to enter the second lower line of the MRZ (Machine Readable Zone) data
on the passport.

4.5.2 Implementation notes

This script implements the BAC (Basic Access Control) secure access algorithm to access
data in the passport. It will not be able to access data protected with the EAC (Enhances
Access Control) algorithm. When the script starts, you will be required to input a minimum
of 28 characters from the beginning of the second lower line of the MRZ (Machine
Readable Zone) data on the passport. This data is needed to compute the cryptographic
keys used in the BAC algorithm.

This scripts attempts to parse biometric facial and fingerprint image data. Normally
however, fingerprint data is not accessible through BAC and requires EAC.

4.6 GSM/SIM

4.6.1 Overview

This script analyses the contents of GSM SIM cards, including SMS and phonebook
contacts.

Chapter 4 Card analysis tools 19

4.6.2 General notes

This script is limited to classic GSM/SIM card content. Most additional data contained on
newer USIM/3G cards is not analyzed.

4.7 moneo

4.7.1 Overview

This scripts provide an analysis of MONEO electronic purse cards used in France.

4.7.2 Implementation notes

The provided output is only partially interpreted.

4.8 Tachograph driver cards

4.8.1 Overview

This script provides an analysis of tachograph smart cards used in Europe. The script
offers the possibility to export data in a DDD file (also known as ESM or C1B files).

4.8.2 Implementation notes

The script is currently limited to driver cards. The generated DDD file does not contained
signed data blocks.

4.9 vitale 2

4.9.1 Overview

This script provides an analysis of the second generation French health card called “Vitale
2”.

4.9.2 Notes

This analysis is based on a lot of guesswork and needs further testing. Some zones, notably
the one containing the cardholder’s photography, seem protected: this is a good design
choice in terms of privacy protection.

4.10 Adding your own scripts

Adding or modifying a script in CARDPEEK is easy: simply add or modify a script in:

• the $HOME/.cardpeek/scripts/ directory for Linux/Mac OS X, or

• the %USERPROFILE%/.cardpeek/scripts/ for Windows users.

Chapter 4 Card analysis tools 20

On Linux systems and Mac OS X, if you want to go further and make a script
permanently part of the source code of CARDPEEK for further distribution, you should
follow these additional steps:

1. Go to the directory containing the source code of CARDPEEK.

2. Execute the update_dot_cardpeek_dir.sh script:

(e.g. type “./update_dot_cardpeek.sh update”)

3. Run make to rebuild CARDPEEK.

4. The new created binary “CARDPEEK” will now contain your new scripts and can be
distributed.

On MS Windows systems, you will need to manually copy your scripts form %USERPROFILE

%/.cardpeek/scripts/ to the dot_cardpeek_dir directory in the source code, before

recompiling CARDPEEK.

You may provide some additional information in the LUA source code of your script by
adding some specific keywords in comments that appear in the first 30 lines of your script.
These keywords are identified by being prefixed with the @ character and must be followed

by a space. The following keywords are recognized:

• @name → This changes the default name of the script displayed in the menu.

• @description → This provides a human readable description of the script

• @targets → This provide an indication of the version of CARDPEEK this script was

developed for.

Example:

-- in LUA comments are marked with a double dash '--'
--
-- @name EMV
-- @description Bank cards 'PIN and chip'
-- @targets 0.8
--

Chapter 4 Card analysis tools 21

Chapter 5

Programming CARDPEEK scripts

The individual scripts that allow to process different types of smart cards are located in
your $HOME/.cardpeek/scripts/ directory or %USERPROFILE%/.cardpeek/scripts/

for MS Windows. These scripts are written in LUA, a programming language that shares
some similarities with Pascal and Javascript. To allow LUA scripts to communicate with
smart cards and to manipulate card data, the LUA language was extended with custom
libraries. This section provides an introduction to the CARDPEEK scripting facilities.

5.1 5.1 Hello world

The simplest CARDPEEK script is probably this one:

nodes.append(nodes.root(), {label="Hello world"})

You can directly type it in the “Command:” input zone at the bottom of the CARDPEEK

GUI. Alternatively you can create a file called hello_world.lua in the script directory
(indicated above), and copy that one line of script in that file. Once the file is saved, if you
start CARDPEEK, “hello world” should appear in the “Analyzer” menu. One click on “hello
world” in the menu will execute the script, providing the result shown in Illustration 5.

The above script is very simple and does not interact with any kind of smart card: it
simply creates a node in the tree view area of CARDPEEK and assigns the label “Hello world”
to it. The first parameter of the append command describes the parent node to which we

add a new node. Since we are actually creating the first node in the tree, we use the special
function nodes.root() which returns a reference to the default root node of the tree. The

second value {label="Hello world"} that is passed to the nodes.append() function

describes the attributes of the node. In this example, the node has only one attribute
specified: a label, which is set to “Hello world”.

Node attributes can be accessed and modified at any time, with the
nodes.set_attribute() and nodes.get_attribute() functions respectively. The above

Chapter 5 Programming Cardpeek scripts 22

script could have been written in two lines with the same result as follows:

new_node = nodes.append(nodes.root())
nodes.set_attribute(new_node, "label", "Hello world")

Finally, it is worth noting that the function in the nodes library can use the Lua Object
Oriented (OO) notation, providing a third and more concise way to write the “Hello world”
script as follows:

nodes.root():append({label="Hello world"})

The choice of using the Lua OO notation instead of the traditional one is purely a matter of
taste.

5.2 Basic communication with a smart card

Here’s a short LUA script that demonstrates how to get and print the ATR (Answer To
Reset) of a card in the card view.

card.connect()

atr = card.last_atr()

if atr~=nil then

 root = nodes.root()

Chapter 5 Programming Cardpeek scripts 23

Illustration 5: Hello world

 mycard = root:append({ classname="card",
 label="My card" })

 mycard:append({ classname="block",
 label="Cold ATR",
 size=#atr,
 val=atr })
end

card.disconnect()

The fist command card.connect() powers-up the card in the card reader and

prepares the card for communication. Next card.last_atr() returns the ATR of the

card. If the value of the ATR is non-nil, the script creates a node called “ATR”, with a call to
nodes.append(). This node will appear at the root of the card data tree-view and is

constructed with two attributes:

• A classname: this describes the icon used to display the node (here a “card” icon).

• A label: the text displayed with the node.

A child node called “cold ATR” is then added to the parent “ATR” node, with 4 attributes:

• A classname: the icon used to display the node (here a “block” icon).

• A label: the text displayed with the node (i.e. “Cold ATR”).

• A size: the text displayed in the second column of the tree view.

• A val: the bytestring value displayed in the third column of the tree view (i.e. the

hexadecimal value of the ATR).

Finally, the card is powered down with the card.disconnect() function.

The final output of the script should have roughly the following structure (though the
value of the ATR will likely be different):

Chapter 5 Programming Cardpeek scripts 24

The example above is equivalent to the “atr” script provided with CARDPEEK. The LUA
language is easy to learn and we refer the reader to http://www.lua.org/ for more
information.

5.3 Representing card data in a tree structure

The data displayed in the card view of CARDPEEK follows a tree structure, as sketched in
Illustration 7.

Chapter 5 Programming Cardpeek scripts 25

Illustration 6: Displaying the ATR

Each node of the tree has the following attributes that influence the display of data in the
card view:

• A classname: describes the icon that will be associated with the node in the first

column of the card view.

• A label: describes the name of the node, shown in bold in the first column of the

card

view.

• An id: describes the Id associated with the node, following the label, in the first

column of the card view.

• A size: the size of the data associated to the node, displayed in the second column

of the card view.

• A value (val): the data associated to the node in raw binary format, displayed in

the third column of the card view.

• An alternative value (alt): the data associated to the node in an interpreted

format, displayed in the third column of the card view.

• A mime-type: this gives CARDPEEK a hint on how to render the value (val) on the

screen, when an alternative value (alt) is not specified. Currently only images are
supported.

All these attributes are optional. Moreover, script programmers can create new attributes
as they wish for their own use, though only the ones above influence the display of
CARDPEEK. Attributes are set through functions such as nodes.set_attribute() and

nodes.set_value() as described in section 6.6.

The tree itself is built with functions such as nodes.append() already described in the

previous examples in this chapter.

CARDPEEK provides many other functions to create, remove, alter and find nodes in a
tree, all described in section 6.6.

Chapter 5 Programming Cardpeek scripts 26

Chapter 6

Development library

This chapter describes the LUA libraries of functions that are used in CARDPEEK scripts.

6.1 The bit library

Since LUA 5.1 does not have native bit manipulation functions, the following functions
have been added. They all operate on integer numbers.

6.1.1 bit.AND

SYNOPSIS

bit.AND(A,B)

DESCRIPTION

Compute the binary operation A and B.

6.1.2 bit.OR

SYNOPSIS

bit.OR(A,B)

DESCRIPTION

Compute the binary operation A or B.

6.1.3 bit.XOR

SYNOPSIS

bit.XOR(A,B)

Chapter 6 Development library 27

DESCRIPTION

Compute the binary operation A xor B.

6.1.4 bit.SHL

SYNOPSIS

bit.SHL(A,B)

DESCRIPTION

Shift the bits of A by B positions to the left. This is equivalent to computing A*2B.

6.1.5 bit.SHR

SYNOPSIS

bit.SHR(A,B)

DESCRIPTION

Shift the bits of A by B positions to the right. This is equivalent to computing A/2B.

6.2 The bytes library

The bytes library provides a new opaque type to LUA: a bytestring, which is used to

represent an array of binary elements.

A bytestring is mainly used to represent binary data exchanged with the card reader in
the application.

The elements in a bytestring array are most commonly bytes (8 bits), but it is also
possible to construct arrays of nibbles (4 bit) or arrays of individual bits. All elements in a
bytestring have the same size (8, 4 or 1), which is referred as the “width” of the bytestring.
The width of each element is specified when the array is created with the function
bytes.new() described in this section. A function to convert between bytestrings of

different widths is also provided.

Individual elements in a bytestring array can be accessed or modified with the
bytes.get and bytes.set functions respectively. Contrary to the LUA tradition, the first

index in a bytestring is 0 instead of 1. The number of elements in a bytestring is indicated

by prefixing the bytestring with the “#” operator, just as with an array (e.g. #BS). It is also

possible to access elements in bytestring using array notation (e.g. BS[1]=65).

Like LUA arrays, if you create a bytestring A then the assignment B=A does not make B

Chapter 6 Development library 28

a full copy of A but only an alias of A: any modification of A applies to B and vice-versa. If

you want to create a real copy of a bytestring, you should use the bytes.clone() function

or the bytes.new() function instead.

The functions of the bytes library are described hereafter.

6.2.1 Operators on bytestrings

The operators that can be used on bytestrings are “..”, “==”, “~=” and “#”

SYNOPSIS

 A..B
 A==B
 A~=B
 #A

DESCRIPTION

The “..” operator creates a new bytestring by concatenating two bytestrings together. The

concatenation operator also works if one of the operands is a string or a number, by
converting it to a bytestring first, following the rules described in the bytes.assign()

function. Writing A..B is equivalent to calling the function bytes.concat(A,B).

The “==” and “~=” operators allow to compare two bytestrings for equality or non-

equality respectively. To be equal, two bytestrings must have the same width and the same
elements in the same order.

Finally the “#” operator returns the number of elements in a bytestring.

6.2.2 bytes.clone

SYNOPSIS

bytes.clone(BS)

BS:clone()

DESCRIPTION

Creates and returns a copy of BS.

RETURN VALUE

This function returns a bytestring upon success or nil if it fails.

Chapter 6 Development library 29

6.2.3 bytes.concat

SYNOPSIS

bytes.concat(value0, value1, ..., valueN)

DESCRIPTION

Returns the concatenation of value0, value1, ..., valueN (from left to right).
For the rules governing the processing of value0, value1, ..., valueN, see the bytes.new()
function.

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

6.2.4 bytes.convert

SYNOPSIS

bytes.convert(BS, w)

BS:convert(w)

DESCRIPTION

Converts BS to a new bytestring where each element has a width w. Depending on the

value of w, the elements in the converted bytestring are obtained by either splitting

elements of BS into several smaller elements in the new bytestring or by grouping several
elements of BS into a single element in the new bytestring.

If the conversion requires splitting elements of BS, then the original elements will be

split with the most significant bit(s) first: the most significant bits of each original element
of BS will have a lower index than the least significant bits.

If the conversion requires grouping elements together, BS is will first be right-padded
with zeros to a size that is a multiple of w. Next, new elements are formed by considering

elements of BS with a lower index as more significant than elements with a higher index.

RETURN VALUE

This function returns a new bytestring upon success and nil otherwise.

Chapter 6 Development library 30

6.2.5 bytes.format

SYNOPSIS

bytes.format(BS, format_string)

BS:format(format_string)

DESCRIPTION

Converts the bytestring BS to various printable formats according to the format_string

character string. This format_string can be composed of plain characters, which are

simply copied to the resulting string, and format specifications which are replaced by the
designated representation of BS.

As in printf() functions found in many programming languages, each format

specification starts with the character “%” and has the following meaning:

• %I represent BS as an unsigned decimal integer.

• %D represent BS as the concatenation of each of its elements represented in

hexadecimal or binary, starting from BS[0] to BS[N-1].

• %S is equivalent to “%w:%D”.

• %P represent BS where each element is converted to a printable character (in 7 bit

ascii format). Unprintable characters are escaped to octal notation (e.g. ascii 13 or
carriage return becomes \015).

• %C represents BS as a LUA string, converting each element into a character of a

string. This can notably be used to print a bytestring representing UTF8 data.

• %w represents the width of BS, that is 8, 4 or 1.

• %l represents the number of elements in BS, in decimal form (the length of BS).

• %% represent the “%” character itself.

RETURN VALUE

This function returns the resulting character string.

6.2.6 bytes.get

SYNOPSIS

bytes.get(BS,i [,j])

BS:get(i [,j])

Chapter 6 Development library 31

DESCRIPTION

Returns the list of values of elements of BS with index i to j inclusive. When j is not

specified, this function simply returns the ith element of BS (i.e it is equivalent to

bytes.get(BS,i,i) or more simply BS[i]).

RETURN VALUE

This function returns a list of integer values upon success or nil otherwise.

6.2.7 bytes.ipairs

SYNOPSIS

for i,v in bytes.ipairs(BS) do
...

end

for i,v in BS:ipairs() do
...

end

DESCRIPTION

The bytes.ipairs(BS) function returns an iterator on the elements of a bytestring BS.

This iterator returns both the index and the value of each element, much like the ipairs()

iterator used for tables in LUA.

RETURN VALUE

This function returns an iterator (a LUA function) upon success or nil otherwise.

6.2.8 bytes.is_printable

SYNOPSIS

bytes.is_printable(BS)

BS:is_printable()

DESCRIPTION

Returns true if all elements in BS can be converted to printable 7 bit ascii characters, and

false otherwise.

Chapter 6 Development library 32

RETURN VALUE

This function always returns false if the width of BS is not 8 (elements of width 4 or 1 are
not printable ascii values).

6.2.9 bytes.new

SYNOPSIS

bytes.new(width [, value1, ..., valueN])

DESCRIPTION

Creates a new bytestring, where each element is width bits. width can be either 8, 4 or 1.

A value can optionally be assigned to the bytestring by specifying one or several values
value1, ..., valueN that will be concatenated together to form the content of the bytestring.

The optional assigned value is built as the concatenation of value1, ..., valueN (from left
to right). Each valuei can be either a bytestring, a string or a number. If valuei is a
bytestring, each element of valuei is appended to BS, without any conversion. If valuei is a
string, it is interpreted as a text representation of the digits of a bytestring (as returned by
t h e tostring() operator). This string representation is interpreted by taking into

consideration the width of elements of BS and is appended to BS. If valuei is a number,

it is converted into a single bytestring element and appended to BS.

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

6.2.10 bytes.new_from_chars

SYNOPSIS

bytes.new_from_chars(string)

DESCRIPTION

Creates a new 8 bit width bytestring from string. Each ascii character in string is
converted directly to an element of the resulting bytestring (e.g. “A” is converted to 65).

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

Chapter 6 Development library 33

6.2.11 bytes.pad_left

SYNOPSIS

bytes.pad_left(BS, block_length, value)

BS:pad_left(block_length, value)

DESCRIPTION

This function returns a copy of BS padded on the left with the element value until the

length of the resulting bytestring reaches a multiple of block_length.

If the size of BS is already a multiple of block_length, no additional padding is

applied.

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

6.2.12 bytes.pad_right

SYNOPSIS

bytes.pad_right(BS, length, value)

BS:pad_right(BS, length, value)

DESCRIPTION

This function returns a copy of BS padded on the right with the element value until the

length of the resulting bytestring reaches a multiple of block_length.

If the size of BS is already a multiple of block_length, no additional padding is

applied.

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

6.2.13 bytes.reverse

SYNOPSIS

bytes.reverse(BS)

BS:reverse()

Chapter 6 Development library 34

DESCRIPTION

Returns a bytestring containing the elements of BS in reverse order.

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

6.2.14 bytes.set

SYNOPSIS

bytes.set(BS, i, e0 [, e1, e2, ..., eN])

BS:set(i, e0 [, e1, e2, ..., eN])

DESCRIPTION

This function replaces the ith element of BS with e0. If additional elements e1,e2,...,eN

are specified in the call then the (i+1)th element of BS is replaced by e1, the (i+2)th

element of BS is replaced by e2, etc.

RETURN VALUE

This function modifies its main argument BS and returns it.

6.2.15 bytes.sub

SYNOPSIS

bytes.sub(BS, start [, end])

DESCRIPTION

Returns a copy of a substring from BS containing all elements between start and end.

The returned value represents a bytestring containing a copy of all the elements of BS that
have an index that verifies index ≥ start and index ≤ end. If end is not specified it will

default to the last index of BS. I f start (or end) is negative, it will be replaced by

#BS+start (or #BS+end respectively).

RETURN VALUE

This function returns a bytestring upon success and nil otherwise.

Chapter 6 Development library 35

6.2.16 bytes.tonumber

SYNOPSIS

bytes.tonumber(BS)

BS:tonumber()

DESCRIPTION

Converts the bytestring BS to a the unsigned decimal value of BS. This conversion considers

BS[0] as the most significant element of BS, and BS[#BS-1] as the least significant.

RETURN VALUE

This function returns a number.

6.2.17 bytes.width

SYNOPSIS

bytes.width(BS)

BS:width()

DESCRIPTION

Return the width of the elements in BS.

RETURN VALUE

This function may return the number 1, 4 or 8.

6.3 The asn1 library

The ASN1 library2 allows to manipulate bytestrings containing ASN1 TLV3 data encoded in
DER/BER4 format. These bytestrings must be 8 bit wide.

When CARDPEEK reads TLV data from a card, it comes as a bytestring where the tag is
encoded, followed by the length, and finally the value itself. For example CARDPEEK may
receive the following string: 4F07A0000000031010, where 4F is actually the tag, 07 the

length, and A0000000031010 is the value. In some cases, the tag or the length follow more

complex encodings, and some TLVs may be contained within other TLVs. The asn1 library

provides facilities to decode and encode TLV data.

2 For a quick tutorial on ASN1 see “A Layman's Guide to a Subset of ASN.1, BER, and DER” by B. S. Kaliski Jr.
3 TLV = Tag,Length,Value
4 DER/BER = Distinguished/Basic Encoding Rules

Chapter 6 Development library 36

Normally, TLV values are composed of 3 elements: a tag number, a length, and the
value itself. In LUA, we only need 2 items to represent a TLV: a tag number and a value
represented as a bytestring. The length of the value is implicit and can computed by
applying the # operator on the value.

The library provides the following functions.

6.3.1 asn1.enable_single_byte_length

SYNOPSIS

asn1.enable_single_byte_length(enable)

DESCRIPTION

This function is only used in rare cases with erroneous card implementations. If
enable=true the behavior of TLV decoding functions (such as bytes.tlv_split()) are

modified by forcing the ASN1 length to be 1 byte long. This means that even if the first byte
of the encoded length is greater than 0x80 it will be interpreted as the length of the TLV

value.

RETURN VALUE

None.

6.3.2 asn1.join

SYNOPSIS

asn1.join(tag, val [, extra])

DESCRIPTION

This function performs the opposite of asn1.split() (described in 6.3.3): it creates a

bytestring representing the ASN1 DER encoding of the TLV {tag, len, val} where

len=#val and appends extra to the result.

tag is positive integer number, val is a bytestring and extra is a bytestring or nil.

RETURN VALUE

This function returns a bytestring.

Chapter 6 Development library 37

6.3.3 asn1.split

SYNOPSIS

asn1.split(str)

DESCRIPTION

Parses the beginning of the bytestring str according to ASN1 BER TLV encoding rules,

and extracts a tag number T and a bytestring value V.

RETURN VALUE

The function returns 3 elements {T, V, extra}, where extra is an optional bytestring

representing the remaining part of str that was not parsed or nil if no data remains.

If this function fails it returns a triplet of nil values.

6.3.4 asn1.split_length

SYNOPSIS

 asn1.split_length(str)

DESCRIPTION

Parses the beginning of the bytestring str according to ASN1 BER and extracts a length L.

RETURN VALUE

The function returns {L, extra}, where extra is an optional bytestring representing the

remaining part of str that was not parsed or nil if no data remains.

If this function fails it returns a pair of nil values.

6.3.5 asn1.split_tag

SYNOPSIS

 asn1.split_tag(str)

DESCRIPTION

Parses the beginning of the bytestring str according to ASN1 BER and extracts a tag T.

RETURN VALUE

The function returns {T, extra}, where extra is an optional bytestring representing the

Chapter 6 Development library 38

remaining part of str that was not parsed or nil if no data remains.

If this function fails it returns a pair of nil values.

6.4 The card library

T h e card library is used to communicate with a smart card in a card reader.

CARDPEEK internally defines a minimal set of card functions in the card library. Some

additional extensions to the card library are written in LUA and can be found in the file
$HOME/.cardpeek/scripts/lib/apdu.lua, which should be loaded automatically when
CARDPEEK starts.

According to ISO 7816-4, smart card command APDUs are composed as a series of
bytes generally organized as follows:

Code Length Name

CLA 1 Class

INS 1 Instruction

P1 1 Parameter 1

P2 1 Parameter 2

Lc 1 (or 3) Length of following data

Data Variable Data

Le 1 (or 3) Maximum expected length of response

The card library defines a global value card.CLA, which is the value that most card

commands will use as CLA when they exchange data with the card-reader (unless you use
card.send() directly).

This library contains the following functions.

6.4.1 card.connect

SYNOPSIS

 card.connect()

DESCRIPTION

Connect to the card currently inserted in the selected smart card reader or in proximity of a
contactless smart card reader. This function will block until card is connected.

This command is used at the start of most smart card scripts.

RETURN VALUE

This function returns true upon success, and false otherwise.

Chapter 6 Development library 39

6.4.2 card.disconnect

SYNOPSIS

card.disconnect()

DESCRIPTION

Disconnect the card currently inserted in the selected smart card reader. This command
concludes most smart card scripts.

RETURN VALUE

This function returns true upon success, and false otherwise.

6.4.3 card.get_data

SYNOPSIS

 card.get_data(id [, length_expected])

DESCRIPTION

Execute the GET_DATA command from ISO 7816-4 where:

• id is the tag number of the value to read from the card.

• length_expected is an optional value specifying the length of the resulting

expected result (defaults to 0, which means 256 bytes).

The value of “CLA” in the command sent to the card is defined by the variable card.CLA.

This function is implemented in apdu.lua.

RETURN VALUE

The card status word and response data, as described in card.send (section 6.4.10).

6.4.4 card.info

SYNOPSIS

card.info()

DESCRIPTION

Return detailed information about the state of the card reader.

Chapter 6 Development library 40

RETURN VALUE

This function returns an associative array of (name ⇒ value) pairs.

6.4.5 card.last_atr

SYNOPSIS

 card.last_atr()

DESCRIPTION

Returns a bytestring representing the last ATR (Answer To Reset) returned by the card.

RETURN VALUE

This function returns a bytestring.

6.4.6 card.make_file_path

SYNOPSIS

card.make_file_path(path)

DESCRIPTION

This function is designed to be a helper function for the implementation of card.select.

It converts a human readable path string (representing a file location in a smart card) into
a format that is compatible with the SELECT_FILE command from ISO 7816-4.

This function parses the string path and returns a pair of values {path_binary,

path_type} where:

• path_binary is a bytestring representing the encoded binary value of path, and

• path_type is a number describing the path type (i.e. a relative path, an AID, ...)

The general rules needed to form a path string can be summarized as follows:

• A file ID is represented by 4 hexadecimal digits (however, there is an exception for

ADFs that can also be represented by their AID, which requires 10 to 32
hexadecimal digits, or in other words 5 to 16 bytes).

• If path starts with the ‘#’ character, the file is selected directly by its unique ID or

AID.

• If path starts with the ‘.’ character, the file is selected relatively to the current DF

or EF.

• Files can also be selected by specifying a relative or absolute path, where each

element in the path is represented by a 4 digit file ID separated by the ‘/’ character:

Chapter 6 Development library 41

◦ If path starts with ‘/’ the file is selected by its full path (excluding the MF).

◦ I f path starts with ‘./’ the file is selected by its relative path (excluding the

current DF).

The next table describes the format of the string path and how it is interpreted more
precisely. In this table, as a convention, hexadecimal characters are represented with the
character ‘h’ and repeated elements are summarized by writing “[...]”.

path format interpretation path_type
Directly select the MF (equivalent to #3F00) 0

#hhhh Directly select the file with ID=hhhh 0

#hhhhhh[...]hh
D i r e c t l y s e l e c t t h e D F w i t h
AID=hhhhhh[...]hh 4

.hhhh
Under the current DF, select the file with
ID=hhhh 1

.hhhh/
Under the current DF, select the DF with
ID=hhhh 2

.. Select the parent of the current EF or DF. 3

./hhhh/hhhh/hh[...]
Select a file using a relative path from the current
DF. All intermediary DF’s are represented by
their file ID separated by the ‘/’ character.

9

/hhhh/hhhh/hh[...]

Select a file with an absolute path from the MF
(the MF is omitted) All intermediary DF’s are
represented by their file ID separated by the ‘/’
character.

8

The resulting bytestring path_binary is simply produced from the concatenation of

the hexadecimal values in path (represented by ‘h’ in the table above.)

RETURN VALUE

Upon success this function returns a pair of values consisting of a bytestring and a number.
Upon failure, this functions returns a pair of nil values.

6.4.7 card.read_binary

SYNOPSIS

card.read_binary(sfi [, address [, length_expected]])

Chapter 6 Development library 42

DESCRIPTION

Execute the READ_BINARY command from ISO 7816-4 where:

• sfi is a number representing a short file identifier (1 ≤ sfi ≤ 30) or the string ‘.’

to refer to the currently selected file.

• address is an optional start address to read data (defaults to 0).

• length_expected is an optional value specifying the length of the resulting

expected result (defaults to 0, which means 256 bytes).

The value of “CLA” in the command sent to the card is defined by the LUA variable
card.CLA.

This function is implemented in apdu.lua.

RETURN VALUE

The card status word and response data, as described in card.send (section 6.4.10).

6.4.8 card.read_record

SYNOPSIS

card.read_record(sfi, r, [, length_expected])

DESCRIPTION

Execute the READ_RECORD command from ISO 7816-4 where:

• sfi is a number representing a short file identifier (1 ≤ sfi ≤ 30) or the string ‘.’

to refer to the currently selected file.

• r is the record number to read.

• length_expected is an optional value specifying the length of the resulting

expected result (defaults to 0, which means 256 bytes).

The value of “CLA” in the command sent to the card is defined by the LUA variable
card.CLA.

This function is implemented in apdu.lua.

RETURN VALUE

The card status word and response data, as described in card.send (section 6.4.10).

6.4.9 card.select

SYNOPSIS

card.select(file_path [, return_what [, length]])

Chapter 6 Development library 43

DESCRIPTION

• E x e c u t e t h e SELECT_FILE c o m m a n d f r o m I S O 7 8 1 6 - 4 w h e r e :

file_path is string describing the file to select, according to the format described

in card.make_file_path().

• return_what is an optional value describing the expected result, as described in

the table below (defaults to 0).

• length is an optional value specifying the length of the resulting expected result

(defaults to nil).

The following constants have been defined for return_what (some can be combined

together by addition):

Constant Value

 card.SELECT_RETURN_FIRST 0

 card.SELECT_RETURN_LAST 1

 card.SELECT_RETURN_NEXT 2

 card.SELECT_RETURN_PREVIOUS 3

 card.SELECT_RETURN_FCI 0

 card.SELECT_RETURN_FCP 4

 card.SELECT_RETURN_FMD 8

The value of “CLA” in the command sent to the card is defined by by the variable
card.CLA. The value of “P1” in the command sent to the card corresponds to the file type

computed by card.make_file_path. The value of “P2” in the command sent to the card

corresponds to return_what.

This function is implemented in apdu.lua.

RETURN VALUE

The card status word and response data, as described in card.send (section 6.4.10).

6.4.10 card.send

SYNOPSIS

 card.send(APDU)

Chapter 6 Development library 44

DESCRIPTION

Sends the command APDU to the card.

RETURN VALUE

The function returns a pair of values: a number representing the status word returned by
the card (ex. 0x9000) and the response data returned by the card.

Both the command APDU and the response data are bytestrings (see the bytes library).

6.4.11 card.warm_reset

SYNOPSIS

 card.warm_reset()

DESCRIPTION

Performs a warm reset of the card (reconnects the card currently inserted in the selected
smart card reader).

RETURN VALUE

None

6.5 The crypto library

This library proposes a limited number of cryptographic functions. Currently these

functions offer mainly DES, Triple-DES, and SHA1 based transformations.

6.5.1 crypto.create_context

SYNOPSIS

 crypto.create_context(algorithm [,key])

DESCRIPTION

This function creates a cryptographic “context” that holds a description of a cryptographic
algorithm, along with a (optional) key. The created context is later used as a parameter to
other generic functions in the crypto l ibrary, such as crypto.encrypt(),

crypto.mac(), crypto.digest(), …

The first parameter algorithm allows to describe the cryptographic algorithm to be

used. It can currently take the following values:

Chapter 6 Development library 45

Algorithm Description

crypto.ALG_DES_ECB Simple DES in ECB mode (so no IV).

crypto.ALG_DES_CBC Simple DES is CBC mode.

crypto.ALG_DES2_EDE_ECB Triple DES with a double length 112 bit key in ECB
mode (no IV).

crypto.ALG_DES2_EDE_CBC Triple DES with a double length 112 bit key in CBC
mode.

crypto.ALG_ISO9797_M3
ISO 9797 MAC method 3 with a 112 bit key: a simple
DES CBC MAC iteration with triple DES on the final
block.

crypto.ALG_SHA1 The SHA1 digest algorithm.

Some of the previous algorithms only operate on data that has been padded to a reach a
proper size, which is usually a multiple of a defined “block size”. The value of algorithm
can be used to specify the padding method that is used, by combining (with the ‘+’
operator) one of the following values to the algorithm previously specified:

Padding method Description

crypto.PAD_ZERO Add 0’s if needed to reach block size.

crypto.PAD_OPT_80_ZERO
If the size of cleartext is not already a multiple of
block size then add one byte 0x80 and then 0’s, if
needed, to reach block size.

crypto.PAD_ISO9797_P2
ISO 9797 padding method 2 (add a mandatory byte
0x80 and pad with optional 0’s to reach block size).

The optional bytestring key must be used to specify the value of the cryptographic key
used for encryption or MAC algorithms (but is ignored for hash algorithms).

RETURN VALUE

This function returns a bytestring representing the created context. Programmers should
consider the result as an opaque value and should not modify its content.

6.5.2 crypto.decrypt

SYNOPSIS

crypto.decrypt(context, data [, iv])

Chapter 6 Development library 46

DESCRIPTION

Decrypt the bytestring data, using the key and algorithm provided in context.

When the decryption algorithm requires an initial vector, it must be specified in iv. All

parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the decrypted data as a bytestring.

6.5.3 crypto.digest

SYNOPSIS

 crypto.digest(context, data)

DESCRIPTION

Compute the digest (also often called a hash) of data, using the algorithm provided in
context.

All parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the digest value as a bytestring.

6.5.4 crypto.encrypt

SYNOPSIS

crypto.encrypt(context, data [, iv])

DESCRIPTION

Encrypt the bytestring data, using the key and algorithm provided in context.

When the encryption algorithm requires an initial vector, it must be specified in iv. All

parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the encrypted data as a bytestring.

6.5.5 crypto.mac

SYNOPSIS

 crypto.mac(context, data)

Chapter 6 Development library 47

DESCRIPTION

Computes the MAC (Message Authentication Code) of data, using the key and algorithm

provided in context. All parameters and the return value are 8 bit wide bytestrings.

RETURN VALUE

This function returns the MAC as a bytestring. The resulting MAC is not truncated.

6.6 The iconv library

The nodes library allows to convert strings from one encoding to another. This is useful for
example to convert ISO-8859-1 character strings to UTF-8 for display in Cardpeek, since
Cardpeek expects UTF-8 strings in the treeview.

This library is a wrapper around the iconv standard library provided on most unix

platforms. See the iconv_open() and iconv() man pages on Linux/Unix for more details.

6.6.1 iconv.open

SYNOPSIS

converter = iconv.open(formcode, tocode)

DESCRIPTION

This function creates a converter object that can be used to convert text encoded in
fromcode to text encoded in tocode.

Both fromcode and tocode are strings describing an encoding such as “ISO-8859-1”,

“UTF-8”, “ASCII”, “CP437”, etc.

RETURN VALUE

Returns a “converter” object that can be used in subsequent calls to iconv.iconv() or nil

in case of failure.

6.6.2 iconv.iconv

SYNOPSIS

converted_string = converter:iconv(orginal_string)

converted_string = original_string:iconv()

Chapter 6 Development library 48

DESCRIPTION

This function converts a string from one format to another, using a converter object
created previously with iconv.open().

The function takes a string as input and returns the converted string.

RETURN VALUE

Returns the converted string in case or success or nil otherwise.

6.7 The nodes library

The nodes library allows to add, delete, modify and find nodes in the card view
representation of the card content.

6.7.1 nodes.append

SYNOPSIS

nodes.append(parent [, attr_array])

parent:append([attr_array])

DESCRIPTION

This function adds a node in the card tree structure.

The new node will be appended to the children of the node identified by the node
reference parent. If parent is nodes.root() the new node will be added at the top level

(see 6.7.10).

The content of the new node can optionally be specified through attr_array, a LUA

associative array of (key,value) pairs describing the content of the new node. For example,
to create a node with the label “foo” with a “file” icon, you would pass the value
{classname="file", label="foo"} a s attr_array. While you may specify any

(key,value) pairs, the nodes library gives a specific meaning to the following keys:

• classname: a string that provides additional information describing the type of

data represented by the node. This value will affect the choice of the icon that is
associated with the node in the displayed card tree structure. The following
classname values are associated with a distinct icon: “application”, “block”,

“card”, “file”, “record” and “item”. If classname is nil or unrecognized, it will

be set to the default value “item”.

• label: a string that describes the data that is represented by the node in

human readable form (such as a “file” or a “date of birth” for example).

• id: a string that identifies the node uniquely within a context (such as a

Chapter 6 Development library 49

number or a unique name).

• size: is a number describing the length of the data element associated to the

node. If set, it will be displayed in the second column of the card view in the UI.

• Val: a bytestring that describes the raw data presented in the third column of

the card view in the UI.

• alt is an optional string that describes the interpreted data presented in the

third column of the card view in the UI.

• mime-type is a string that is used to optionally indicate how to render visually

the value specified by the val attribute (described above) when the alt attribute

is absent. Currently this is only used to render images by specifying image data
in the val attribute and setting mime-type to “image/jpeg” for example.

These attributes can be also added or modified in a node with the node.set_attribute()

function (see 6.7.11).

RETURN VALUE

Upon success the function returns a node reference to the newly created node. If the
function fails, it returns nil.

6.7.2 nodes.attributes

SYNOPSIS

for k,v in nodes.attributes(node_ref) do
...

end

for k,v in node_ref:attributes() do
...

end

DESCRIPTION

This function provides an iterator for the attributes of node_ref, a node reference. The

attributes are represented as key/value pairs (in the example here k,v).

RETURN VALUE

Returns an iterator for use in a for loop.

Chapter 6 Development library 50

6.7.3 nodes.children

SYNOPSIS

for child in nodes.children(parent) do
...

end

for child in parent:children() do
...

end

DESCRIPTION

This function provides an iterator for the child nodes of parent, a node reference. The

iterator returns a reference to each child of the parent node (in the example here child).

RETURN VALUE

Returns an iterator for use in a for loop.

6.7.4 nodes.find

SYNOPSIS

for node_ref in nodes.find(root, attr_array) do
...

end

for node_ref in root:find(attr_array) do
...

end

DESCRIPTION

This function provides an iterator that will return all nodes in the card tree view rooted at
root, which match the attributes defined in attr_array. The attribute array attr_array

is a LUA associative array of key/value pairs as defined for the function nodes.append()

(see 6.7.1).

A node is considered as matching attr_array if all key value/pairs defined in

attr_array exist in the node and have the same value. For example if we use

{label="file"} as attr_array, the iterator will go through all nodes that have the label

“file”, regardless of other attributes the nodes may have.

Chapter 6 Development library 51

RETURN VALUE

Returns an iterator for use in a for loop.

6.7.5 nodes.find_first

SYNOPSIS

nodes.find_first(root, attr_array)

root:find_first(attr_array)

DESCRIPTION

This function returns the first node in the card tree view rooted at root, which matches the

attributes defined in attr_array. The attribute array attr_array is a LUA associative

array of key/value pairs that is used for matching following the same rules used for
node.find() (see 6.7.4).

RETURN VALUE

A node reference or nil if no node is found.

6.7.6 nodes.from_xml

SYNOPSIS

nodes.from_xml(parent,xml_string)

parent:from_xml(xml_string)

DESCRIPTION

This function appends nodes described in the XML expression xml_string to parent. The

expression xml_string describes a subtree of nodes, following the syntax defined in

Chapter 7 .

RETURN VALUE

This function returns true in case of success and false otherwise.

6.7.7 nodes.get_attribute

SYNOPSIS

nodes.get_attribute(node_ref, attr_name)

Chapter 6 Development library 52

node_ref:get_attribute(attr_name)

DESCRIPTION

Gets the value of an attribute in the node identified by node_ref. The name of the

attribute to retrieve is identified by the string attr_name.

The attributes named “classname”, “label”, “id”, “alt”, “val”, “mime-type” and

“size” refer to the parameters passed to the function nodes.append() as described in

section 6.7.1.

RETURN VALUE

This function returns a string upon success and nil otherwise.

6.7.8 nodes.parent

SYNOPSIS

nodes.parent(node_ref)

node_ref:parent()

DESCRIPTION

Returns the parent node of the node referenced by node_ref. If the node referenced by

node_ref has no parent the function return nil.

RETURN VALUE

Return a node reference upon success or nil otherwise.

6.7.9 nodes.remove

SYNOPSIS

nodes.remove(node_ref)

node_ref:remove()

DESCRIPTION

Deletes the node identified by node_ref as well as all its children.

RETURN VALUE

The function returns true upon success and false otherwise.

Chapter 6 Development library 53

6.7.10 nodes.root

SYNOPSIS

nodes.root()

DESCRIPTION

This function simply return the absolute root of the card view tree, which is invisible. This
is typically used to create the first node in the tree in combination with node.append()

(e.g. “node.root():append(...)”)

RETURN VALUE

A node reference.

6.7.11 nodes.set_attribute

SYNOPSIS

nodes.set_attribute(node, attr_name, attr_value)

node:set_attribute(attr_name, attr_value)

DESCRIPTION

Sets an attribute in the node identified by node_ref. The attribute to set is identified by

the string attr_name and takes the value indicated by the string attr_value.

The attributes named “classname”, “label”, “id”, “alt”, “val”, “mime-type” and

“size” refer to the parameters passed to the function nodes.append() as described in

section 6.7.1.

The programmer can associate any arbitrary attribute with a node.

RETURN VALUE

This function returns true upon success and false otherwise.

6.7.12 nodes.to_xml

SYNOPSIS

nodes.to_xml(node)

node:to_xml()

Chapter 6 Development library 54

DESCRIPTION

Returns an XML representation of the sub-tree that has node as a root. If node is

nodes.root() the representation of the whole tree is returned.

RETURN VALUE

This function returns a string upon success. If the function fails, it returns nil.

6.8 The ui library

The ui library allows to control some elements of the user interface of CARDPEEK, and in

particular the tree structure representing the data extracted from the card.

The tree structure representing card data is composed of nodes, each represented on
one row in the card tree view. Some function in the ui library are used to manipulate

these nodes (or rows), allowing to add, remove or edit them. These functions identify each
node by a node reference, which is an internal opaque type. The ui library functions are

described in the following paragraphs.

6.8.1 ui.question

SYNOPSIS

ui.question(text, buttons)

DESCRIPTION

Asks the user a question requesting him to answer by selecting a response.
The question is described in the string text, while the set of possible answers described
in the LUA array buttons. Each element in the array buttons is string representing a
possible answer.

RETURN VALUE

Upon success, the function returns the index of the answer selected by the user in the table
buttons (LUA table indices are usually numbers greater or equal to 1).

Upon failure the function returns 0.

EXAMPLE

ui.question("Quit the script?", { "yes", "no" })

Chapter 6 Development library 55

6.8.2 ui.readline

SYNOPSIS

ui.readline(text [,len [,default_value]])

DESCRIPTION

Request the user to enter a text string. The user’s input can optionally be limited to len

characters and can also optionally hold a predefined value default_value.

RETURN VALUE

The function returns the user’s input upon success and false otherwise.

EXAMPLE

ui.readline("Enter PIN code:", 4, "0000")

6.8.3 ui.load_view

SYNOPSIS

ui.load_view(file_name)

DESCRIPTION

Loads the tree from the XML file named file_name. See Chapter 7 for a description of

the file format.

RETURN VALUE

The function returns true upon success and false otherwise.

6.8.4 ui.save_view

SYNOPSIS

ui.save_view(file_name)

DESCRIPTION

Saves the tree in XML format inside the file named file_name. See Chapter 7 for a

description of the file format.

RETURN VALUE

The function returns true upon success and false otherwise.

Chapter 6 Development library 56

6.9 The log library

The log library contains just one function described below, which allows to print

messages in the “log” tab of the application.

6.9.1 log.print

SYNOPSIS

 log.print(level, text)

DESCRIPTION

Prints a message text in the console window.

level describes the type of message that is printed. level can take the following

values: log.INFO, log.DEBUG, log.WARNING, or log.ERROR.

All messages printed on the screen with this function are also saved in the file
“$HOME/.cardpeek.log”.

RETURN VALUE

None.

6.10 Other libraries

6.10.1 The treeflex library

As of version 0.8, the treefex library is deprecated. All functions previously provided by

this library are now available through the nodes library.

6.10.2 The country_codes and currency_codes libraries

These library provide convenience functions to translate currency and country codes in

human readable names.

6.10.3 The en1545 library

This library provides tools to manipulate data used in Calypso cards that follow

CEN/ISO 1545.

6.8.4 The strict library

This library forces LUA variables to be explicitly declared, and thus reduces programming
errors.

Chapter 6 Development library 57

6.8.5 The tlv library

This library is built upon the asn1 library and provides automated tools to analyze and

display complex ASN1 TLV data objects in CARDPEEK.

Chapter 6 Development library 58

Chapter 7

File format

The card view presented in CARDPEEK can be save or imported in XML format. This format
is quite straightforward, as shown in the following example, which was created with the
atr script:

<?xml version="1.0"?>
<cardpeek>
 <version>0.8</version>
 <node>
 <attr name="classname">card</attr>
 <attr name="label">ATR</attr>
 <node>
 <attr name="classname">block</attr>
 <attr name="label">cold ATR</attr>
 <attr name="size">10</attr>
 <attr name="val" type="bytes">8:3B751300004409EA9000</attr>
 </node>
 </node>
</cardpeek>

The format of the XML card view file is constructed according to the following rules:

• The root element of the XML structure is <cardpeek>, which contains one

<version> element followed by one or more <node> elements.

• The <version> element contains the file format version number (currently 0.8).

• A <node> element may contain both <node> and <attr> elements.

• A <attr> element has one mandatory XML attribute “name” which describes the

name of a “node attribute” associated with a node in the tree view, while the text
inside the <attr> element describes the value associated with that “node attribute”.

The <attr> element has one optional XML attributes “type” that is used to specify

the format of the content data, when it is not a standard string. Currently, the

Chapter 7 File format 59

attribute type can only take one value “bytes” to indicate that the content data is

an encoded bytestring.

A node can have any number of “node attributes” defined by an <attr> element.

However, some “node attributes” have a specific meaning for CARDPEEK (see 6.7.1):

• <attr name="classname"> describes the type of node (a file, an application, a

data block, a data item, etc.) and its value will determine the icon used to represent
the node on the screen in the application.

• <attr name="label"> describes the label given to the node on the screen (first

column).

• <attr name="id"> describes the id of the node displayed on the screen (first

column).

• <attr name="size”> describes the size that is displayed on the screen (second

column).

• <attr name="val" type="bytes"> describes the value of the bytestring

associated with a node (and represented in the third column on the screen). This
bytestring is represented as a width value followed by “:” and the digits representing
the bytestring (this is equivalent to the %S output format of the bytes.format()

function).

• <attr name="alt"> describes an alternative representation of the value

associated with a node and represented in simple text format.

• <attr name=”mime-type”> is an indicator of how to render the data described by

the val attribute in the absence of the alt attribute (see 6.7.1).

Node attribute names stating with a minus sign (example: “-makup-val”) are considered

as temporary attributes and are not exported or saved in XML format. They are used
internally by CARDPEEK or script programs.

Note: t h e CARDPEEK XML format has changed in CARDPEEK version 0.8 and is not
compatible with previous versions.

Chapter 7 File format 60

Chapter 8

License

CARDPEEK is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.

As an exemption to the GNU General Public License, compiling, linking, and/or using
OpenSSL is allowed.

CARDPEEK is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

Chapter 8 License 61

