EyE
vl.1

User’s guide

E. BERTIN
Institut d’Astrophysique & Observatoire de Paris

C.MARMO
Institut d’Astrophysique de Paris

April 4, 2006

Contents

1 What is EYE?

2 Skeptical Sam’s questions

3 Installing the software

3.1 Obtaining EYE
3.2 Software and hardware requirements L.
3.3 Imstallation

4 Overview of the software

4.1 Image input and preprocessing

4.2 Selection of patterns

4.3 Learning

5 Using EYE

5.1 The Configuration file
5.1.1 Creating a configuration file,
5.1.2 Format of the configuration file
5.1.3 Parameter list

5.2 Detailed description of the configuration parameters
5.2.1 Background subtraction L
5.22 Retinaset-up L
5.2.3 Pattern selection L
5.24 Learning
5.2.5 Check-images

5.3 Example.

NN NN

ot W W W

© © o oo 00 N N OO oo o ot »

ii

1 What is EYE?

EYE (Enhance Your Extraction) is a program that generates non-linear image filters using
machine-learning. A neural network, connected to pixels of a moving window (“retina”) in one
or several input image(s), is trained to associate these “stimuli” to the corresponding response in
one or several “model” image(s). The resulting filter can then be loaded in SExtractor (Bertin
1999) to operate complex, wildly non-linear filters on astronomical images. Typical applications
of this system include adaptive filtering, feature detection and cosmetic corrections. The main
features of the EYE are:

e FITS format, including Multiple Extensions, is used for input and output,

Ability to work with very large images (up to, say, 10% x 109 pixels on a 64 bits workstation),

Automatic selection of representative pattern pairs,

Adaptive compression/expansion of the input/output signals to comply with the lower
dynamic range of the neural network,

Optimized RPROP (Riedmiller & Braun 1993) backpropagation learning algorithm (>
10 times faster than the standard gradient descent).

Checking of the most critical operations through CHECK_IMAGEs.

It is important to stress that in practice, the resulting filtered images will generally not match
the desired results within less than, say, a few percents rms , even with very large training
sets. This is mainly due to the limited size and convergence properties of the neural network.
This limitation has to be taken into account when using the filtered results: although they will
generally be perfectly adequate for feature detection, interpolation or classification of data, they
may often degrade photometric or astrometric measurements of high S/N objects.

2 Skeptical Sam’s questions

Skeptical Sam doesn’t have time to test software extensively but is always keen on asking
agressive questions to the author to find out if a program could fit his needs.

S.Sam: Is EYE really useful or is it just some kind of glamourous neural network demo?

Author: EYE is useful in cases where small (i.e. identifiable through a window a few pixels
wide), typical signatures must be identified in FITS images. Glitches are a nice example. Iden-
tifying glitches is most certainly possible, with similar efficiency, through a dedicated heuristic
algorithm involving fine-tuning and bunches of “if”. Nevertheless, machine-learning techniques
like the neural-network implemented in EYE have the great advantage that no more code needs
to be written to perform this operation. In the context of a heavy experiment evolving with
time, it may even be thought of updating automatically the filter using well-defined calibration
data.

EYE may also be used for non-linear filtering of astronomical images in a broader sense, but it
has to be remembered that the accuracy of the learning is limited in practice, and will generally
not be better than a few percent at the output. Finally, other techniques are far more appropriate
for identifying large patterns or doing quasi-linear filtering.

S.Sam: I always got the impression that stuff involving neural nets is not very solid and reliable.
The few tries I had at various NN programs did not yield the expected results, so I gave up.
Should I expect something “serious” from a NN-based filter?

Author: The weird behaviours witnessed by casual users with supervised neural networks are
due to a bad understanding of how learning works. What the system does is simply try to
minimise a cost function, generally a squared error, by adjusting its internal parameters. This
will be done at all costs (no pun intended!), including “learning by heart” (loss of generalisation
if too many degrees of freedom are available) and “demagogy” (favouring the most common pat-
terns). Therefore great care has to be taken in the selection of training patterns and architecture
of the neural net. Although EYE balances automatically the distribution of input patterns, it
does not prevent generalisation loss if not enough samples are used for training. Typically, no
less than about a thousand relevant patterns must populate the training set.

S.Sam: The learning stage can take a few hours on a reasonably fast computer! Isn’t this
prohibitive for most applications?

Author: This generally has to be done no more than once. With the traditional approach, the
same amount of time, and even more, would be spent in designing and coding a similar specific
feature detector.

3 Installing the software

3.1 Obtaining EYE

The easiest way to obtain EYE is to download it from the official website!, or alternatively from
the current official anonymous FTP site?. At this address the latest versions of the program are
available as standard .tar.gz Unix source archives as well as documentation and RPM binary
packages for various architectures.

3.2 Software and hardware requirements

EYE has been developed on Unix systems (SUN-Solaris, Digital Unix and GNU/Linux) and
should compile on any POSIX-compliant system.

The software is run in (ANSI) text-mode from a shell. A window system is therefore unnecessary
with present versions.

Memory requirements depend on the size of the training set, which can be quite large. 100MB
is sufficient in most cases, although larger amounts will be profitable for allowing more diversity
in the training set. Swap-space can be put to contribution, as the performance hit should be
moderate.

3.3 Installation

To install, you must first uncompress and unarchive the archive:

gzip -dc eye-x.x.tar.gz | tar xvf -

"http://terapix.iap.fr/soft/eye
2ftp://ftp.iap.fr/pub/from_users/bertin/eye/

A new directory called eye-x.x should now appear at the current position on your disk. You
should then just enter the directory and follow the instructions in the file called “INSTALL”.

4 Overview of the software

The global layout of EYE is presented in Fig. 1. Let us now describe each of the important
steps.

4.1 Image input and preprocessing

The images are processed by pairs: the input image and the “model image”. Both are background-
subtracted. The background-subtraction algorithm is identical to that of SExtractor, and as in
SExtractor, image buffering takes place. This means that very large images can be loaded even
with modest amounts of silicon memory.

Astronomical images obtained with electronic devices generally have a large dynamic range
(typically 80 dB). Standard back-propagation neural networks cannot deal very well with such
raw data: parameter space is populated in an extremely unequal fashion, and many input units
will totally saturate on bright pixels of the images, while behaving almost linearly on dimmer
ones. The dynamic range of the background-subtracted pixel data has therefore to be compressed
before being usable. EYE uses the following transfer function:

y(z) = — In (1 + @) , (1)

]

where x is the original, background-subtracted pixel value, and ¢ the measured standard devi-
ation of the (global) background noise. This transfer function has several advantages:

e The typical dynamic range is reduced to about 20 dB (10x).

e Patterns created this way all have similar similar noise properties, even if they were ex-
tracted from images with very different depths.

e y is “almost” linear for pixels close the background value, and asymptotically logarithmic
for those located on astronomical sources. This means that the neural network will tend to
minimise fractional residuals between its output and the “model” for bright pixels, which
is indeed what we want when processing astronomical images.

EYE deals with image pairs. Because the model image will often be a noise-free image with no
measurable standard deviation, its o is actually copied from that of the input image.

Logically, the compressed output of the neural network will be expanded by SExtractor’s filter
routine using:

_O'EGX
z(y) = o] plyl, (2)

Note that the output x is background-subtracted.

4.2 Selection of patterns

In many cases, not all the pixels of the images can be used for learning. First, the total number
of pixels may exceed the amount of patterns that can fit in memory — remember that the

(| Framebuter |]

Background
subtraction

Dynamic
compression

(| Framebuter |]

Background
subtraction

Dynamic
compression

Selection

+
Weighting

Training-
set

Retina filter
parameters

Histo-
gramming

2D-

selection
function

Figure 1: Global Layout of EYE.

input to the neural network is itself an array of pixels —; it may even exceed the number of
presentations needed for a convergence if the latter has to be achieved in a reasonable amount
of time. Second, not all the pixels might be of interest for the desired task to accomplish: for
instance, most astronomical images contain essentially (noisy) background values. Achieving a
relatively good learning in terms of the global residual error is therefore fast and “easy” in such
conditions. But the related “error landscape” is then so flat that some critical patterns might
just be considered as anecdotal, because of their low statistical weight. In this case there might
be not much chance for the learning to proceed all the way to the desired behaviour of the filter.
Some selection and weighting of patterns has therefore to take place. In absolute, the details of a
perfect selection procedure depend on the scientific objectives and can be quite complex, because
the selection function has to operate over a high dimensional space (one output, plus all input
pixels). In practice, for EYE, the problem was highly simplified by taking into account only the
output and the central (or closest to for even-sized masks) input pixel. A second simplification
was introduced by assuming that the best weighting is the one that gives equal representation
of {input pixel, output pixel} pairs. This is achieved concretely by using a 2D-histogram in
input-output (compressed) pixel-space to weight each member of the histogram bins: this is a
kind of histogram equalisation. Randomised selection, instead of weighting, occurs in a bin if
the number of members of that bin exceeds some value; this value is the maximum number of
training patterns allowed by the user, divided by the total number of bins in the histogram.

4.3 Learning

All the operations described above are done for each pair of {input, output} images. Learning
starts when the training set is complete. The neural network here is a classical multilayered
Perceptron. The training is done using the RPROP algorithm? (Riedmiller & Braun 1993).
The RPROP algorithm is a data-adaptive method, that is, there is one iteration per pattern
presentation. As 10° to 10° iterations are typically needed for convergence, the all training set
will generally be presented several times to the neural network (“sweeps”).

5 Using EYE

EYE is run from the shell with the following syntax:

% eye -i Input_imagell,Input_image2,...]1 -o Output_imagel[,Output_image2,...]
-c configuration-file [-Parameterl Valuel] [-Parameter?2 Value2 ...]

The part enclosed within brackets is optional. Any ”-Parameter Value” statement in the
command-line overrides the corresponding definition in the configuration-file or any default
value (see below).

5.1 The Configuration file

Each time EYE is run, it looks for a configuration file. If no configuration file is specified in the
command-line, it is assumed to be called “eye.conf” and to reside in the current directory. If
no configuration file is found, EYE will use its own internal default configuration.

3Several famous backpropagation algorithms including the standard-backprop, QUICKPROP, RPROP,
Conjugate-gradient, and Cascade-correlation, where tested in the context of EYE. RPROP was eventually chosen
because it proves to offer superior convergence speed without need for fine-tuning and is not easily fooled by local
minima.

5.1.1 Creating a configuration file

EYE can generate an ASCII dump of its internal default configuration, using the “-d” option.
By redirecting the standard output of EYE to a file, one creates a configuration file that can
easily be modified afterwards:

% eye -d >default.scamp

A more extensive dump with less commonly used parameters can be generated by using the
“-dd” option.

5.1.2 Format of the configuration file

The format is ASCII. There must be only one parameter set per line, following the form:
Config-parameter Value(s)

Extra spaces or linefeeds are ignored. Comments must begin with a “#” and end with a linefeed.
Values can be of different types: strings (can be enclosed between double quotes), floats, integers,
keywords or Boolean (Y/y or N/n). Some parameters accept zero or several values, which must
then be separated by commas. Integers can be given as decimals, in octal form (preceded by digit
0), or in hexadecimal (preceded by 0x). The hexadecimal format is particularly convenient for
writing multiplexed bit values such as binary masks. Environment variables, written as $HOME
or ${HOME} are expanded, and not only for string parameters.

5.1.3 Parameter list

Here is a list of all the parameters known to EYE. Please refer to next section for a detailed
description of their meaning. Some “advanced” parameters (indicated with an asterisk) are also
listed. They must be used with caution, and may be rescoped or removed without notice in
future versions.

BACK DEFAULT* 0.0 float
Default background value (in ADUs) to be subtracted in BACK_.TYPE MANUAL mode.

BACK FILTTHRESH* 0.0 float
Difference threshold (in ADUs) for the background-filtering.

BACK_SIZE 128 integers (n < 2)
Size, or Width,Height (in pixels) of a background mesh.

BACK_FILTERSIZE 3 integers (n < 2)
Size, or Width,Height (in background meshes) of the background-filtering mask.

BACK_TYPE* AUTO keyword
What background is subtracted from the images:
AUTO The internal interpolated background-map
MANUAL A user-supplied constant value provided in
BACK DEFAULT.
BUFFER MAXSIZE 200000 integer

Maximum number of different patterns selected for learning.

CHECKIMAGE NAME check.fits strings (n < 16)
File name for each “check-image”.

CHECKIMAGE_TYPE NONE keywords (n < 16)
Type of information to put in the “check-images”:
NONE No check-image
HISTOGRAM 2D histogram: Output pixel data (y) vs central

input pixel data (x)

FRAME_LIMITS -1 integers (n < 4)
Tmin, Ymin, Lmax, Ymax Of the active rectangular area in all input images.

LEARNING_TYPE NEW keyword
Type of learning initialisation:
NEW Start a new learning
RESUME Continue learning using a pre-existing retina file
RESTART Start a new learning based on pre-existing retina
architecture
LEARNING RATE 0.1,50.0 floats (n < 2)

RPROP learning parameters: Learn_rate or Learn_rate, Mazx_learn_rate.

NN_SIZE 12,8,1 integers (n < 3)
Number of neurons for each layer (maximum 3 layers).

NPASSES 100 integer
Number of patterns presentations during learning.

RETINA_NAME default.ret string
Filename for the output (or input) retina.

RETINA_SIZE 5,5 integers (n < 2)
Retina size: Size or Width, Height.

VERBOSE_TYPE NORMAL keyword
Degree of verbosity of the software on screen:
QUIET No Output besides warnings and error messages
NORMAL “Normal” display with messages updated in real
time using ASCII escapes-sequences
FULL Everything

5.2 Detailed description of the configuration parameters
5.2.1 Background subtraction

Background subtraction uses SExtractor’s algorithm and is controllable with the same keywords:
BACK_SIZE and BACK_FILTERSIZE. Please refer to the SExtractor® documentation for details.

‘http://terapix.iap.fr/soft/sextractor

5.2.2 Retina set-up

The retina-filter can be split in two parts: the retina itself, which is the “sensitive area”, and
the neural network that comes behind, which is the processing unit.

In the current implementation, the retina is a rectangle, whose dimensions must be specified
using the RETINA_SIZE keyword. Because it involves non-linear processing, retina filtering is
much more CPU-consuming than convolution. In addition, current learning algorithm converge
extremely slowly when the number of input parameters is high. Therefore one should keep the
RETINA_SIZE as small as possible (although large enough to detect wanted features). In practice,
retingelarger than ~ 7 x 7 pixels lead to unmanageably slow processing.

The neural network can contain up to 3 (hidden) layers, which is theoretically sufficient to
generate any arbitrary mapping (2 even suffice for a continuous mapping). The NN_SIZE keyword
specifies the number of

neurons on each layer. With the current model, each layer partitions its own input space in two
subspaces separated by a “smooth” transition hyperplane. The signal becomes more and more
“abstract” as it progresses though consecutive layers. It is advised to use a decreasing number
of degrees of freedom (number of neurons) when counting from the retina; e.g.: 12,5,3.

Finally, the name of the output® file where the weights of the trained neural network will be
stored must be specified with the RETINA_NAME keyword. Retina filenames are traditionally given
the .ret extension (default filename for retinseis “default.ret”).

5.2.3 Pattern selection

Pattern selection is totally automatic in EYE. The only configuration parameter which provides
some kind of selection mean is FRAME_LIMITS. With this keyword one can specify a Zmin, Ymin,
Tmax, Ymax Set of coordinates delimiting a rectangular zone in all input images from which the
patterns will be extracted. The “—1” value can be specified to indicate “no limit” for a particular
coordinate. “FRAME_LIMITS —1” means no limit at all on any coordinate.

5.2.4 Learning

The RPROP learning algorithm used in EYE updates neural network weights at each pattern
presentation (“data-adaptive” training). For a given retina architecture, the number of presen-
tations of the whole training set, controlled by the NPASSES keyword, determines the execution
time. Basically, NPASSES should be set as high as possible, within, of course, the acceptable limit
of processing time. Values as high as 1000 (10%) for NPASSES are typical, leading to execution
times of a few minutes to a few hours on a fast machine, depending on the retina and neural
network sizes.

The maximum number of distinct patterns stored in memory for learning is set with the
BUFFER_MAXSIZE parameter. Here again, BUFFER_MAXSIZE should be set to the largest possi-
ble value (limited by the amount of available memory), to avoid learning “by heart”. On most
systems, hundreds of thousands patterns can be stored. Be careful however not to exceed the
available amount of silicon memory and trigger virtual memory usage, which may result in strong
performance loss.

One of the nice features of RPROP is that it needs very few tuning parameters: the learning rate

% Actually, this file can also be accessed for input, depending on the LEARNING_TYPE (see §5.2.4).

is automatically adjusted during training. Only the initial and maximum allowed learning rates
are adjustable, through the LEARNING RATE parameter. It is advised to leave LEARNING_RATE to
the default set of values: 0.1,50.0. Nevertheless, in some cases, circumstances might allow for a
faster initial learning rate (> 0.1), or require to decrease the maximum allowed learning rate.

The LEARNING_TYPE parameter allows one to choose between several keywords, to start a new
learning from scratch, or to resume learning from a previous run:

e NEW: A retina-file, whose name is set with the RETINA_NAME parameter, will be created or
overwritten, and learning will start from zero. This is the default.

e RESUME: Loads a pre-existing retina-file and continues the learning where it was left. The
NN_SIZE, RETINA SIZE and LEARNING RATE parameters are ignored. One should have in
mind that not all the temporary information managed by the RPROP algorithm during
learning is saved. Hence resuming a learning from a previous run is not as efficient as
continuing it with a larger number of NPASSES. In addition, it must be verified that the
training set is identical or at least similar to the one learnt during the previous run.

e RESTART: Identical to RESUME, except that the learning is restarted from scratch. The
LEARNING_RATE parameters are taken into account. This can be useful for keeping the
same retina attributes and neural net architecture while starting a different learning.

e NONE: Loads all files but does not perform any learning. Can be used to load a pre-
existing retina and simply check its behaviour on a set of input/output images through
the Check-images.

5.2.5 Check-images

Like SExtractor, EYE features the possibility to create FITS images while running, to check
various aspects of the processing. All these “check-images” can be created simultaneously.
CHECKIMAGE NAME sets the check-image filename(s) while CHECKIMAGE TYPE selects its/their con-
tent(s). Because several input+output image sets are available for training, check-images always
refer to the last in the list. Currently available CHECKIMAGE TYPESs are:

e NONE: No check-image (the default).

e HISTOGRAM: 2D histogram (of the last image-pair) in the central input pixel data (x) -
output pixel data (y) plane, before equalization. Both axes use the compressed scale of

(1)

5.3 Example.

Let’s take the example of a filter that detects pixels affected by cosmic ray impacts, or non-
saturated artifacts next to CCD saturation trails around bright stars. We want the filter to
produce an output which is proportional to the glitch signal if present, and 0 if not.

The simplest way to proceed is to isolate examples of such glitches on one or more images. Cosmic
rays can easily be selected on “dark” CCD exposures: a simple thresholding will generally
do. The more complex features next to saturated area can be isolated “by hand” through
thresholding+cut&paste on science frames. Examples of training pairs obtained this way are
shown in Fig. 2.

&

Figure 2: Example of an input+model image pair for learning. Left : Input image (detail).
Right : Model image (detail).

Once the training samples are ready, we can start the learning. An example of configuration file

1S:

Default configuration file for EyE 1.3.0

RETINA_NAME
RETINA_SIZE

LEARNING_TYPE
LEARNING_RATE

NN_SIZE

NPASSES
BUFFER_MAXSIZE

BACK_SIZE
BACK_FILTERSIZE

CHECKIMAGE_TYPE

CHECKIMAGE_NAME

default.ret

5,5

NEW
0.1, 50.0

12,8,1

500
200000

HISTOGRAM

check.fits

Name of the file containing retina weights
Retina size: <size> or <width>,<height>

NONE, NEW, RESUME or RESTART
<learn rate> or <learn rate>,<max. learn rate>

Neurons per layer (max. 3 layers)
Nb of passes through the training set
Maximum number of different patterns used

Background ---———-——---—---——-——————————————————

Background mesh: <size> or <width>,<height>
Background filter: <size> or <width>,<height>

Check Image —-———————————————=———————————————-——-
NONE or FILTERED.

or HISTOGRAM
Filename for the check-image

10

VERBOSE_TYPE NORMAL # QUIET, NORMAL or FULL
As can be seen, a HISTOGRAM check-image is requested. EYE is run with
% eye -i input*.fits -o modelx.fits

The filter, default.ret, can now be used as a standard SExtractor filter. An example of result
obtained with this filter is shown in Fig. 3.

Figure 3: Example of filtering obtained with a retina-filter.. Left: Original image (detail). Right:
Filtered image (detail).

References

[1] Bertin E., SExtractor, User’s manual, 1999, TAP

[2] Riedmiller M., Braun H., 1993, in Proceeding of the IEEE Conference on Neural Networks,
San Francisco

11

