GPRbuild User’s Guide

Document revision level <<TBD>>
Date: <<TBD>>

AdaCore

Printed November 2007
Copyright © 2007, AdaCore
Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all
copies.

Introduction

GPRbuild is a generic build tool designed for the construction of large multi-
language systems organized into subsystems and libraries. It is well-suited for
compiled languages supporting separate compilation, such as Ada, C, C++ or
Fortran.
GPRbuild manages a three step build process

e compilation phase:

Each compilation unit of each subsystem is examined in turn, checked for
consistency, and compiled or recompiled when necessary by the appropriate
compiler. The recompilation decision is based on dependency information
that is typically produced by a previous compilation.

e post-compilation phase (or binding):

Compiled units from a given language are passed to a language-specific
post-compilation tool if any. Also during this phase objects are grouped into
static or dynamic libraries as specified.

e linking phase:
All units or libraries from all subsystems are passed to a linker tool specific
to the set of toolchains being used.
GPRbuild takes as its main input a project file ‘<file>.gpr ~ ’ defining the build
characteristics of the system under construction such as:
e which sources to use,
e where to find them,
e where to store the objects produced by the compiler,
e which options should be passed to the compiler.
The tool is generic in that it provides, when possible, equivalent build ca-
pabilities for all supported languages. For this, it uses a configuration file
‘<file>.cgpr ’that has a syntax and structure very similar to a project file, but

which defines the characteristics of the supported languages and toolchains.
The configuration file contains information such as:

e the default source naming conventions for each language,

e the compiler name, location and required options,

e how to compute inter-unit dependency,

e how to build static or dynamic libraries,

e which post-compilation actions are needed,

e how to link together units from different languages.
On the other hand, GPRbuild is not a replacement for general-purpose build
tools such as make or ant which give the user a high level of control over the

GPRbuild User's Guide

build process itself. When building a system requires complex actions that
do not fit well in the three-phase process described above, GPRbuild might
not be sufficient. In such situations, GPRbuild can still be used to manage

the appropriate part of the build. For instance it can be called from within a
Makefile.

Chapter 1: Guided Tour

1 Guided Tour

This chapter presents examples ranging from simple multi-language builds
to some of the most advanced scenarios. All the examples shown in the text
are included in the GPRbuild package, which is installed on your system in
‘<prefix>/share/examples/gprbuild/ ’

1.1 Configuration

GPRbuild requires one configuration file describing the languages and
toolchains to be used, and project files describing the characteristics of the
user project. Typically the configuration file can be created automatically by
GPRbuild based on the languages defined in your projects and the compilers
on your path. In more involved situations — such as cross compilation, or
environments with several compilers for the same language — you may need to
control more precisely the generation of the desired configuration of toolsets.
A tool, GPRconfig, described in (undefined) [Configuring with GPRconfig],
page (undefined)), offers this capability. In this chapter most of the examples
can use autoconfiguration.

GPRbuild will start its build process by trying to locate a configuration file
called ‘default.cgpr . If such a file is not available or if the option --
autoconf=xxx is used, GPRbuild will create its own configuration file suitable
for native development and assuming that there are known compilers on your
path for each of the necessary languages. It is preferable and often necessary
to manually generate your own configuration file when:

e using cross compilers (in which case you need to use gprconfig’s --target= ’)
option,
e using a specific Ada runtime (e.g. --RTS=sjlj),

e working with compilers not in the path or not first in the path, or
e autoconfiguration does not give the expected results.

GPRconfig provides several ways of generating configuration files. By default, a
simple interactive mode lists all the known compilers for all known languages.
You can then select a compiler for each of the languages; once a compiler has
been selected, only compatible compilers for other languages are proposed. Here
are a few examples of GPRconfig invocation:

e The following command triggers interactive mode. The configuration

will be generated in GPRbuild’s default location, <gprbuild_install_
root>/share/gpr/default.cgpr)

gprconfig

e The first command below also triggers interactive mode, but the resulting
configuration file has the name and path selected by the user. The second

GPRbuild User's Guide

command shows how GPRbuild can make use of this specific configuration
file instead of the default one.
gprconfig -o path/my_config.cgpr
gprbuild --config=path/my_config.cgpr
e The following command again triggers interactive mode, and only the rele-
vant cross compilers for target ppc-elf will be proposed.
gprconfig --target=ppc-elf
e The next command triggers batch mode and generates at the default loca-
tionha configuration file using the first native Ada and C compilers on the
path.
gprconfig --config=Ada --config=C --batch
e The next command, a combination of the previous examples, creates in
batch mode a configuration file named ‘x.cgpr ’ for cross-compiling Ada
with a run-time called hi and using C for the LEON processor.

gprconfig --target=leon-elf --config=Ada,,hi --config=C --batch -o x.cgpr

1.2 First Steps

Assume a simple case of interfacing between Ada and C where the main program
is first in Ada and then in C. For a main program in Ada the following project
may be used:

project Ada_Main is
for Languages use ("Ada", "C");

for Source_Dirs wuse ("ada_src", "util_src");

for Object_Dir use "obj";

for Exec_Dir use ".";

for Source_Files use ("ada_main.adb", "c_lib.ads", "lib.h", "lib.c");
for Main use ("ada_main.adb");

end Ada_Main;
This project indicates that:
e the sources files of this subsystem are written in Ada and C.
e the directories containing the sources are ada_src and util_src
e the directory for the objects is obj .

e the directory for the executables is “.”; i.e., the directory containing the
project file itself.
e the complete list of source files is ada_main.adb , c_lib.ads ,lib.h ,lib.c

They can be found anywhere in the source directories mentioned above.
e the main entry point of the system is in the source file ada_main.adb

This information is sufficient for GPRbuild to build an executable program from
the sources. Note that no direct indication on how to build the various elements
is given in the project file, which describes the project properties rather than
a set of actions to be executed. Here is the invocation of GPRbuild that allows
building the multi-language program:

Chapter 1: Guided Tour

$ gprbuild -Pada_main

gcc —-c¢ ada_main.adb -o ada_main.o
gcc —-c¢ c_lib.ads -o c_lib.o

gcc -c lib.c -o lib.o

gprbind ada_main

gcc ada_main.o -o ada_main.exe

Notice the three steps described in the (undefined) [Introduction], page (unde-
fined):

e The first three gec commands correspond to the compilation phase.
e The gprbind command corresponds to the post-compilation phase.
e The last gecc command corresponds to the final link.

The default output of GPRbuild’s execution is kept reasonably simple and easy
to understand. In particular, some of the less frequently used commands are not
shown, and some parameters are abbreviated. GPRbuild’s option -v provides
a much more verbose output which includes, among other information, more
complete compilation, post-compilation and link commands.

To illustrate some other GPRbuild capabilities, here is a slightly different
project using similar sources and a main program in C:
project C_Main is
for Languages use ("Ada", "C");
for Source_Dirs wuse ("c_src", "util_src");
for Object_Dir use "objl";
for Main use ("c_main.c");
package Compiler is
C_Switches := ("-pedantic");
for Default_Switches ("C") use C_Switches;
for Default_Switches ("Ada") use ("-gnaty");
for Switches ("c_main.c") use C_Switches & ("-g");
end Compiler;
end C_Main;
This project has many similarities with the previous one, as evident in the
Languages , Source_Dirs and Object_Dirs attributes. As expected, its Main
attribute now refers to a C source. The first noticeable difference is the lack of
a Source_Files attribute. When not specified explicitly, this attribute has an
implicit value which is the complete set of sources of the given Languages to be
found in Source_Dirs . Many attributes can be left implicit and will be given
reasonable default values. For instance, Source_Dirs and Object Dir default
to the current directory (where the project file resides). The Exec_Dir attribute
defaults to the value of Object_Dir
The other notable difference in this new project is the presence of the package
Compiler , which groups the attributes specific to the compilation phases. The
Default_Switches attribute provides the list of compilation switches to be used

GPRbuild User's Guide

for any source of a given Languages value unless the source has its own set of
compilation switches specified by the attribute Switches . Note also the use of a
the variable C_Switches . A project variable can be useful to avoid duplication
of information and here ensures that the file ‘c_main.c ’ is always compiled
with the default switches (whatever they may be), plus -g’. In this specific
situation the use of a variable could have been replaced by a reference to the
Default_Switches attribute:
for Switches ("c_main.c") use Compiler’Default_Switches ("C") & ("-g");

Here is the output of the GPRbuild command using this project:
$gprbuild -Pc_main
gcc —-c¢ -pedantic -g c_main.c -o c_main.o
gcc -c -gnaty ada_lib.adb -o ada_lib.o
gcc -c -gnaty c_lib.ads -o c_lib.o
gcc —-c¢ -pedantic lib.c -o 1lib.o
gprbind c_main

gcc c_main.o -o c_main.exe

The switches for compiling Ada sources, the default switches for C sources in
the compilation of ‘lib.c ’, and the specific switches for ‘c_main.c ’have all been
taken into account. When comparing this GPRbuild output with the previous
one, notice that there are common sources between the two projects, namely
‘c_lib.ads ’ and ‘lib.c ’. Those sources were compiled twice, once for each
project. This is not surprising, since the two projects are independent and have
different Object Dir s even though they share some sources. It is possible to
share more than the sources, and thus avoid unnecessary recompilations when
compilation units are used in several different projects, by splitting a system
into subsystems.

1.3 Subsystems

The common compilation units may be grouped in a separate subsystem with
its own project file and a specified Object_Dir attribute:
project Common_Subsystem is
for Source_Dirs wuse ("util_src");
for Object_Dir use "obj_util";
end Common_Subsystem;
By default, all the sources in directory util_src belong to project Common_
Subsystem , and when compiled, their objects go in obj_dir . Other projects,
whose sources depend on sources in util_src , can create a dependency rela-
tionship using a project with clause:
with "Common_Subsystem";
project Ada_Main is
for Languages use ("Ada");
for Source_Dirs wuse ("ada_src");

Chapter 1: Guided Tour

end' A(Iia_Main;
The Ada_Main.Source_Dirs no longer includes util_src . The main program in
ada_src still needs sources from util_src to be compiled. It also needs those
units built. Now they will be compiled using the build properties defined in
Common_Subsystem instead of those of Ada_Main .

The project’s with clause has several effects. It provides visibility of sources
during the compilation process as if the units from Ada_Main were compiled
with an implicit -lutil_src option. It also guarantees that the necessary units
from Common_Subsystem are available for Ada_Main ’s linking phase.

It is also possible to use the with relationship to define a project file that
allows sharing common attributes or packages. For instance, you can define a
project whose only purpose is to centralize the default compilation options for
various languages:

abstract project Attribute_Sharing is
for Source_Files use ();
package Compiler is
for Default_Switches ("C") use ("-pedantic");
for Default_Switches ("Ada") use ("-gnaty");
end Compiler;
end Attribute_Sharing;
This package does not correspond to a subsystem with proper source files, and
this is conveyed by the modifier abstract just before the keyword project . An
abstract project cannot have associated sources, hence the definition of Source_
Files as the empty list. It informs the build manager that no compilation is
to take place directly from this project. Defining an empty list of sources is
essential for such utility projects because otherwise the default rules would
apply and all sources in the current directory would be associated with this
project. Now other projects can share this project’s attributes and packages.
For instance, Ada_Main can share all the Compiler package’s attributes at once
using a renaming declaration:
with "Attribute_Sharing";

project Ada_Main is

package Compiler renames Attribute_Sharing.Compiler;
end Ada_Main;

or if other aspects of the Compiler package need to be defined locally, such as
adding -g for the ‘c_main.c ’ source only, sharing can be done at the attribute
level directly as in this new version of C_Main.Compiler
package Compiler is
for Default_Switches ("C") use
Attribute_Sharing.Compiler’Default_Switches ("C");
for Switches ("c_main.c") wuse

GPRbuild User's Guide

Compiler’Default_Switches ("C") & ("-g");
end Compiler;
In order to change the compilation options of all C files used for building both
C_Main and Ada_Main , it is sufficient to edit a single project file.

1.4 Project Extensions

Previous sections have shown how to share both compilation units and project
properties among different systems. Sharing is an essential aspect of large sys-
tem development since it avoids unnecessary duplication, reduces compilation
time and lessens the maintenance burden. Unfortunately, it sometimes gets in
the way. In the above example, Ada_Main and C_Main both depend on Common_
Subsystems because they have precisely the same needs, but the requirements
of the two systems can diverge over time in which case sharing becomes a prob-
lem rather than a solution. For instance, suppose that C_Main is now baselined
and should not be changed, while Ada_Main is still under active development
(which requires changes in the sources of the common subsystem). The issue is
how to satisfy Ada_Main’s needs without taking any risk of perturbing C_Main.
One possibility is to duplicate the common subsystem completely so that one
version can evolve while the other one can remain frozen. That will force du-
plication and recompilation of the whole project. Extensions provide a more
flexible mechanism, making it possible to provide a new version of a subsystem
without having to duplicate the sources that do not change. A project extension
inherits all the sources and objects from the project it extends and allows you to
redefine some of the sources which hide the original versions. You can also add
new sources or remove existing ones. Here is an example of extending project
Common_Subsystem:
project New_Common_Subsystem
extends "../subsystems/common_subsystem.gpr" is
for Source_Dirs wuse ("new_util_src");
for Object_Dir use '"new_obj_util";
end New_Common_Subsystem;
The project sources are to be found in Common_Subsystem.Source_Dirs and
New_Common_Subsystem.Source_Dirs , the latter hiding the former when the
same source filenames are found in both. New sources can be added to the
project extension by simply placing them in its Source_Dirs . Original sources
can be removed, because of the attribute Excluded_Source_Files . When build-
ing a project extension, all units depending on new versions of sources are rebuilt
in the extension’s Object_Dir . Other objects remain in their original location
and will be used by the builder whenever necessary.
A project extension can be used in the context of a large program composed of
many subsystems. Extending one subsystem may implicitly affect many other
subsystems depending on it, even though there are no source changes in those

Chapter 1: Guided Tour

dependent projects. In order to avoid the need to generate a project extension
for each of the affected subsystems, you can use the notion of “extending all”,
which basically means “extend all the projects necessary so that this specific
project extension can be used instead of its original version”. Here is an example
of an extending-all project:
with "new_common_subsystem.gpr";
project New_Ada_Main extends all "../subsystems/ada_main.gpr" is
for Source_Dirs wuse ("new_ada_src");
for Object_Dir use '"new_obj";
for Exec_Dir use ".";
end New_Ada_Main;

1.5 Libraries

A library is a subsystem packaged in a specific way. There are two major
kinds of libraries: static and dynamic. A project file representing a library is
very similar to a project file representing a subsystem. You just need to give
the library a name, through the attribute Library Name . It is also possible to
define a Library Dir which allows you to separate the final library components
(e.g. archive files) from the compilation byproducts (e.g. object files) that may
be needed to efficiently rebuild a new version of the library but which are not of
any interest to library users. Here is a simple project file for a static library:
library project Static_Lib is
for Languages use ("Ada", "C");
for Source_Dirs wuse ("lib_src");
for Object_Dir use "obj";
for Library_Dir wuse "lib";
for Library_Kind use "static";
for Library_Name use "11";
end Static_Lib;

The library can be built on its own using standard GPRbuild commands, for
example:

$gprbuild static_lib.gpr

It can also be built as a by product of building a main project using this library
through a " with" as it was the case for simple subsystems:
with "static_lib.gpr";
project Main is
for Main wuse ("ada_main.adb");
end Main;

in which case
$gprbuild main.gpr
will rebuild the library I1 if it is not up to date.
To construct a dynamic library instead of a static library, simply replace

for Library_Kind use "static";

GPRbuild User's Guide

by
for Library_Kind use "dynamic";
Library projects can also be useful to describe a library that you may want to
use but that, for some reason, cannot be rebuilt, for instance when the sources
to rebuild the library are not available. Such library projects need simply to use
the externally_built attribute as in the example below:
library project Extern_Lib is
for Languages use ("Ada", "C");
for Source_Dirs wuse ("lib_src");
for Library_Dir wuse "1ib2";
for Library_Kind use "dynamic";
for Library_Name use "12";
for Externally_Built use "true";
end Extern_Lib;
In the case of externally built libraries, the Object Dir attribute does not need
to be specified in this case because it will never be used.

1.6 Scenarios and conditional source files

In the previous section we have seen how to create libraries from simple subsys-
tems by using specific attributes. Rather than having several almost identical
project files defining a static or a dynamic version of the library representing a
subsystem, one can write a more generic version of the project file thanks to the
notion of scenarios. Scenarios are defined as types with a known set of string
values as shown by the type Lib_Kind below. A scenario variable,Kind below
can get its initial value from the environment thanks to an external call. This
variable can then be used in a case statement as shown below. Note that only
scenario variables can be used to control case statements. There is another
kind of untyped string variables illustrated by Prefix below that can be used
in general string expressions but cannot control case statements and thus are
not scenarios variables.
library project General_ Lib is

type Lib_Kind is ("static", "dynamic", "extern");
Kind : Lib_Kind := external ("LIB", "static");
Prefix := "../libraries/";

for Languages use ("Ada", "C");
for Source_Dirs wuse (Prefix & "lib_src");
case Kind is
when "static" =
for Object_Dir use Prefix & "obj";
for Library_Dir wuse Prefix & "lib";
for Library_Kind use "static";
for Library_Name use "11";
when "dynamic" =
for Object_Dir use Prefix & "obj2";
for Library_Dir wuse Prefix & "1lib2";

10

for Library_Kind use
for Library_Name use
when "extern" =>
for Library_Dir use
for Library_Kind use
for Library_Name use
for Externally_Built
end case;
end General_Lib;

"dynamic";
"12";

Prefix & "1lib2";

"dynamic";
H12H;
use "true";

Chapter 1: Guided Tour

11

GPRbuild User's Guide

12

Chapter 2: Important Concepts

2 Important Concepts

The following concepts are the foundation of GNAT Project files and the
GPRDbuild process.

Source files and source directories

A source file is associated with a language through a naming convention.
For instance, foo.c is typically the name of a C source file; bar.ads or
bar.l.ada are two common naming conventions for a file containing an
Ada spec. A compilation unit is often composed of a main source file and
potentially several auxiliary ones, such as header files in C. You can define
or modify the naming conventions, which are used by GPRbuild to invoke
the appropriate compiler. Source files are looked up in the source directories
associated with the project through the Source_Dirs attribute. By default,
all the files (in these source directories) following the naming conventions
associated with the declared languages are considered to be part of the
project. It is also possible to limit the list of source files using the Source_

Files or Source_List_File attributes.

Object files and object directory

An object file is an intermediate file produced by the compiler from a com-
pilation unit. It is used by the post-compilation phases to produce final
executables or libraries. The object files produced in the context of a given
project are stored in a single directory, the Object Dir that can be spec-
ified in the project file. A need for storing objects in different directories
corresponds to the need to split the system into distinct subsystems.

Project file

A text file using an Ada-like syntax. It defines build-related characteris-
tics of an application, or a part of it. The characteristics include the list
of sources, the location of those sources, the location for the generated ob-
ject files, the name of the main program, and the default options for the
various tools involved in the build process. These characteristics can be
conditionalized through scenario variables and case statements.

Configuration file

A text file using the project file syntax. It defines languages and their
characteristics as well as toolchains for those languages and their charac-
teristics.

Project attribute

A specific characteristic as defined by a project attribute clause. Its value is
a string or a sequence of strings. For instance, the Source_Dirs attribute
is a sequence of strings representing the actual names of the directories
containing the sources of the project. The attribute itself can be param-

13

GPRbuild User's Guide

14

eterized. For instance CompilerDefault_Options ("Ada") refers to the
default compiler options for the Ada language.

Project subpackage

Global characteristics are defined at the top level of a project. Specific
characteristics affecting a given tool are grouped in a subpackage with
the same name as the tool. The most common subpackages are Builder ,
Compiler , Binder , and Linker

Project variables

Two kinds of variables are available with projects: simple variables and
scenario variables. A simple variable can hold any string, or sequence of
string values; this is useful as a shortcut for a complex expression. Scenario
variables are a restricted version of simple variables; they can only take
their values from a static enumeration of strings representing the various
supported scenarios. These scenario variables are used in conjunction with
the case construct to offer limited conditionalization of project characteris-
tics. Both types of variables are local to the project defining them and can
get initialized with an external value, such as an environment variable,
through the external directive.

Subsystem

A subsystem is a coherent part of the complete system to be built. It is
represented by a set of sources and one object directory. A simple system
is composed of a single subsystem. Complex systems are usually composed
of a graph of interdependent subsystems. A subsystem is dependent on
another subsystem if knowledge of the other one is required to build it, and
in particular if visibility on some of the sources of this other subsystem is
required. A subsystem is usually represented by one project file. The sub-
system dependency relationship is represented by the with clause between
corresponding project files.

Library

A library is a specific type of subsystem where, for convenience, you group
the objects together using system-specific means. Project files are a system-
and language-independent way of building both static and dynamic li-
braries. They also support the concept of standalone libraries (SAL) which
offers two significant properties: the initialization of the library is either
automatic or very simple; a change in the implementation part of the li-
brary implies minimal post-compilation actions on the complete system and
potentially no action at all for dynamic SALs.

Project extension

A project extension is a project that represents an augmentation of the
original project. Suppose for instance that a subsystem S is shared by two
unrelated systems S1 and S2. If S1 requires a change in S, but this change

Chapter 2: Important Concepts

would adversely affect S2, then a modified version of S can be defined as an
extension of S, a “delta” to the original version which only contains the new
source files (those that have been changed) and the objects that are affected
by these changes.

15

GPRbuild User's Guide

16

Chapter 3: Building with GPRbuild

3 Building with GPRbuild

3.1 Command Line

Three elements can optionally be specified on GPRbuild’s command line:
e the main project file,
e the switches for GPRbuild itself or for the tools it drives, and
e the main source files.

The general syntax is thus:
gprbuild [<proj>.gpr] [switches] [names]
{[-cargs opts] [-cargs:lang opts] [-largs opts] [-gargs opts]}

GPRbuild requires a project file, which may be specified on the command line,
either directly or through the -P’ switch. If not specified, then GPRbuild uses
the project file ‘default.gpr ’ if there is one in the current working directory.
Otherwise, if there is only one project file in the current working directory,
GPRbuild uses this project file.

Main source files represent the sources to be used as the main programs.
If they are not specified on the command line, GPRbuild uses the source files
specified with the Main attribute in the project file. If none exists, then no
executable will be built.

When source files are specified along with the option “-c ’, then recompilation
will be considered only for those source files. In all other cases, GPRbuild
compiles or recompiles all sources in the project tree that are not up to date,
and builds or rebuilds libraries that are not up to date.

If invoked without the ‘--config= ’ or ‘--autoconf= ’ options, then GPRbuild
will look for a configuration project file ‘default.cgpr ~ ’, or ‘<targetname>.cgpr ’
if option ‘--terget=<targetname> ’1s used. If there is no such file in the default
locations expected by GPRbuild (<install>/share/gpr and the current directory)
then GPRbuild will invoke GPRconfig with the languages from the project files,
and create a configuration project file ‘auto.cgpr ’ in the object directory of
the main project. The project ‘auto.cgpr ’ will be rebuilt at each GPRbuild
invocation unless you use the switch ‘--autoconf=path/auto.cgpr >, which will
use the configuration project file if it exists and create it otherwise.

Options given on the GPRbuild command line may be passed along to in-
dividual tools by preceding them with one of the “command line separators”
shown below. Options following the separator, up to the next separator (or end
of the command line), are passed along. The different command line separators
are:

e “cargs ’
The arguments that follow up to the next command line separator are
options for all compilers for all languages. Example: ‘-cargs -g

17

GPRbuild User's Guide

K

‘-cargs:<language name>

The arguments that follow up to the next command line separator are
options for the compiler of the specific language.

Examples:

e ‘-cargs:Ada -gnatf ’
e ‘“cargs:C-E ’

‘“-bargs

The arguments that follow up to the next command line separator are
options for all binder drivers.

‘-bargs:<language name>

The arguments that follow up to the next command line separators are
options for the binder driver of the specific language.
Examples:

e ‘-bargs:Ada binder_prefix=ppc-elf

e ‘-bargs:C++ c_compiler_name=ccppc
“largs ’
The arguments that follow up to the next command line separator are
options for the linker.
‘-gargs ’

The arguments that follow up to the next command line separator are
options for GPRbuild itself. Usually ‘-gargs ’is specified after one or several
other command line separators.

3.2 Switches
The switches that are interpreted directly by GPRbuild are listed below.

First, the switches that may be specified only on the command line, but not

in package Builder of the main project:

e ‘--version

18

Display information about GPRbuild: version, origin and legal status, then
exit successfully, ignoring other options.

‘-help ’
Display GPRbuild usage, then exit successfully, ignoring other options.
‘--display-paths

K

Display two lines: the configuration project file search path and the user
project file search path, then exit successfully, ignoring other options.

Chapter 3: Building with GPRbuild

>

‘--config=<config project file name>

This specifies the configuration project file name. By default, the config-
uration project file name is ‘default.cgpr ’. Option ‘--config= ’ cannot
be specified more than once. The configuration project file specified with
‘-config= ’ must exist.

‘--autoconf=<config project file name>

This specifies a configuration project file name that already exists or will be
created automatically. Option ‘--autoconf= ’ cannot be specified more than
once. If the configuration project file specified with “--autoconf=’ exists,
then it is used. Otherwise, GPRconfig is invoked to create it automatically.

‘--target=<targetname> ’

This specifies that the default configuration project file is
‘<targetname>.cgpr . If no configuration project file with this name is
found, then GPRconfig is invoked with option ‘--target=<targetname> ’to
create a configuration project file ‘auto.cgpr ’

Note: only one of --config ’, “-autoconf ’or ‘-target= ’can be specified.
‘--subdirs=<subdir> ’

This indicates that the real directories (except the source directories) are
subdirectories of the directories specified in the project files. This applies
in particular to object directories, library directories and exec directories.
If the directories do not exist, they are created automatically.
‘--direct-import-only ’

This indicates that sources of a project should import only sources or header
files from directly imported projects, that is those projects mentioned in a
with clause and the projects they extend directly or indirectly. A check
is done in the compilation phase, after a successful compilation, that the
sources follow these restrictions. For Ada sources, the check is fully en-
forced. For non Ada sources, the check is partial, as in the dependency
file there is no distinction between header files directly included and those
indirectly included. The check will fail if there is no possibility that a
header file in a non directly imported project could have been indirectly im-
ported. If the check fails, the compilation artifacts (dependency file, object
file, switches file) are deleted.

‘-aP dir ’ (Add directory ‘dir ’ to project search path)

Specify to GPRbuild to add directory ‘dir ’ to the user project file search
path, before the default directory.

“b’ (Bind only)
Specify to GPRbuild that the post-compilation (or binding) phase is to be

performed, but not the other phases unless they are specified by appropriate
switches.

>

19

GPRbuild User's Guide

20

-c ’ (Compile only)

Specify to GPRbuild that the compilation phase is to be performed, but not
the other phases unless they are specified by appropriate switches.

-d’ (Display progress)

Display progress for each source, up to date or not, as a single line completed
x out of y (zz%).... If the file needs to be compiled this is displayed after the

invocation of the compiler. These lines are displayed even in quiet output
mode (switch -q’).

‘eL ’ (Follow symbolic links when processing project files)

By default, symbolic links on project files are not taken into account when
processing project files. Switch ‘-eL ’ changes this default behavior.

“F’ (Full project path name in brief error messages)

By default, in non verbose mode, when an error occurs while processing a
project file, only the simple name of the project file is displayed in the error
message. When switch -F’ is used, the full path of the project file is used.
This switch has no effect when switch ‘-v ’ is used.

“l 7 (Link only)

Specify to GPRbuild that the linking phase is to be performed, but not the
other phases unless they are specified by appropriate switches.

‘-0 name’ (Choose an alternate executable name)

Specify the file name of a single executable. Switch ‘-0 ’ cannot be used with
several mains on the command line, nor with no main on the command line
and several mains in attribute Main of the main project.

“p’ or ‘--create-missing-dirs ’ (Create missing object, library and exec
directories)

By default, GPRbuild checks that the object, library and exec directories
specified in project files exist. Switch ‘-p * instructs GPRbuild to attempt to
create missing directories.

P proj ’(use Project file proj)

Specify the path name of the main project file. The space between -P’ and
the project file name is optional. Specifying a project file name (with suffix
‘.gpr ’) may be used in place of option -P’. Exactly one main project file can
be specified.

“u’ (Unique compilation, only compile the given files)

If there are sources specified on the command line, only compile these
sources. If there are no sources specified on the command line, compile all
the sources of the main project.

In both cases, do not attempt the binding and the linking phases.

Chapter 3: Building with GPRbuild

e “U’ (Compile all sources of all projects)

If there are sources specified on the command line, only compile these
sources. If there are no sources specified on the command line, compile all
the sources of all the projects in the project tree.

In both cases, do not attempt the binding and the linking phases.
e ‘““vPx ’ (Specify verbosity when parsing Project Files)

By default, GPRbuild does not display anything when processing project
files, except when there are errors. This default behavior is obtained with
switch ‘-vP0 ’. Switches -vP1 ’ and ‘-vP2 ’ yield increasingly detailed output.

e ‘““Xnm=val ’ (Specify an external reference for Project Files)

Specify an external reference that may be queried inside the project files
using built-in function external . For example, with ‘“XBUILD=DEBUG,
external("BUILD") inside a project file will have the value "DEBUG".

Then, the switches that may be specified on the command line as well as in
package Builder of the main project (attribute Switches):

e ‘f ’(Force recompilations)

Force the complete processing of all phases (or of those explicitly specified)
even when up to date.

e ‘“j<num> ’ (use num simultaneous compilation jobs)

By default, GPRbuild invokes one compiler at a time. With switch *j ’, it is
possible to instruct GPRbuild to spawn several simultaneous compilation
jobs if needed. For example, ~j2 ’ for two simultaneous compilation jobs or
“ja ’ for four.

e “k’ (Keep going after compilation errors)

By default, GPRbuild stops spawning new compilation jobs at the first
compilation failure. Using switch “k’, it is possible to attempt to com-
pile/recompile all the sources that are not up to date, even when some
compilations failed. The post-compilation phase and the linking phase are
never attempted if there are compilation failures, even when switch -k ’ is
used.

e “q’ (Quiet output)

Do not display anything except errors and progress (switch -d’). Cancel
any previous switch v ’.

e ‘s’ (recompile if compilation switches have changed)

By default, GPRbuild will not recompile a source if all dependencies are sat-
isfied. Switch ‘-s ’ instructs GPRbuild to recompile sources when a different
set of compilation switches has been used in the previous compilation, even
if all dependencies are satisfied. Each time GPRbuild invokes a compiler,

21

GPRbuild User's Guide

it writes a text file that lists the switches used in the invocation of the
compiler, so that it can retrieve these switches if ‘-s ’ is used later.

e ‘v’ (Verbose output)
Display full paths, all options used in spawned processes, and reasons why
these processes are spawned. Cancel any previous switch -q .

e “we’ (Treat all warnings as errors)

When ‘“-we’ is used, any warning during the processing of the project files
becomes an error and GPRbuild does not attempt any of the phases.

e “wn’ (Treat warnings as warnings)

Switch ‘-wn’ may be used to restore the default after ‘-we’ or “-ws’.
e “ws’ (Suppress all warnings)

Do not generate any warnings while processing the project files.

3.3 Initialization

Before performing one or several of its three phases, GPRbuild has to read the
command line, obtain its configuration, and process the project files.

If GPRbuild is invoked with an invalid switch or without any project file on
the command line, it will fail immediately.
Examples:
$ gprbuild -P
gprbuild: project file name missing after -P

$ gprbuild -P c_main.gpr -WW

gprbuild: illegal option "-WW"
GPRbuild looks for the configuration project file first in the current working
directory, then in the default configuration project directory. If the GPRbuild
executable is located in a subdirectory ‘<prefix>/bin ’, then the default config-
uration project directory is ‘<prefix>/share/gpr ’, otherwise there is no default
configuration project directory.

When it has found its configuration project path, GPRbuild needs to obtain
its configuration. By default, the file name of the main configuration project is
‘default.cgpr ~ ’. This default may be modified using the switch ‘--config=... ’

Example:

$ gprbuild --config=my_standard.cgpr -P my_project.gpr
If GPRbuild cannot find the main configuration project on the configuration
project path, then it will look for all the languages specified in the user
project tree and invoke GPRconfig to create a configuration project file named
‘auto.cgpr ’that is located in the object directory of the main project file.

Once it has found the configuration project, GPRbuild will process its config-
uration: if a single string attribute is specified in the configuration project and

22

Chapter 3: Building with GPRbuild

is not specified in a user project, then the attribute is added to the user project.
If a string list attribute is specified in the configuration project then its value is
prepended to the corresponding attribute in the user project.

After GPRbuild has processed its configuration, it will process the user
project file or files. If these user project files are incorrect then GPRbuild
will fail with the appropriate error messages:

$ gprbuild -P my_project.gpr
ada_main.gpr:3:26: "src" is not a valid directory
gprbuild: "my_project.gpr" processing failed

Once the user project files have been dealt with successfully, GPRbuild will start
its processing.

3.4 Compilation of one or several sources

If GPRbuild is invoked with -c and there are one or several source file names
specified on the command line, GPRbuild will compile or recompile these
sources, if they are not up to date or if -f is also specified. Then GPRbuild
will stop its execution, even if -b or -1 are specified.

The options/switches used to compile these sources are described in section
(undefined) [Compilation Phasel, page (undefined).

3.5 Compilation Phase

When switch ‘¢’ is used or when switches “-b’ or | ’ are not used, GPRbuild
will first compile or recompile all the sources that are not up to date in all the
projects in the project tree.

GPRbuild will first consider each source and decide if it needs to be

(re)compiled.
A source needs to be compiled in the following cases:

Switch ‘-f ’ (force recompilations) is used

The object file does not exist

The source is more recent than the object file

The dependency file does not exist

The source is more recent than the dependency file

The switch file does not exist

The source is more recent than the switch file

The dependency file cannot be read

The dependency file is empty

The dependency file has a wrong format

A source listed in the dependency file does not exist

23

GPRbuild User's Guide

e A source listed in the dependency file has an incompatible time stamp
e A source listed in the dependency file has been replaced

e Switch -s ’is used and the source has been compiled with different switches
or with the same switches in a different order

When a source is successfully compiled, the following files are normally created
in the object directory of the project of the source:

e An object file

e A dependency file, except when the dependency kind for the language is
none

o A switch file

The compiler for the language of the source is invoked with the following
switches/options:

e The required compilation switches for the language

e The compilation switches coming from package Compiler of the project of
the source

e The compilation switches specified on the command line for all compilers,
after ‘-cargs ’

e The compilation switches for the language of the source, specified after
‘-cargs:<language>

e Various other options including a switch to create the dependency file while
compiling, a switch to specify a configuration file, a switch to specify a
mapping file, and switches to indicate where to look for other source or
header files that are needed to compile the source.

If compilation is needed, then all the options/switches, except those described
as “Various other options” are written to the switch file. The switch file is a text
file. Its file name is obtained by replacing the suffix of the source with ‘.cswi .
For example, the switch file for source ‘main.adb ’is ‘main.cswi ’and for ‘toto.c
it is ‘toto.cswi ’

If the compilation is successful, then if the creation of the dependency file
is not done during compilation but after (see configuration attribute Compute_
Dependency), then the process to create the dependency file is invoked.

If GPRbuild is invoked with a switch ‘j ’ specifying more than one compila-
tion process, then several compilation processes for several sources of possibly
different languages are spawned concurrently.

For each project file, attribute Interfaces may be declared. Its value is a
list of sources or header files of the project file. For a project file extending
another one, directly or indirectly, inherited sources may be in the list. When
Interfaces is not declared, all sources or header files are part of the interface of
the project. When Interfaces is declared, only those sources or header files are

b

24

Chapter 3: Building with GPRbuild

part of the interface of the project file. After a successful compilation, gprbuild
checks that all imported or included sources or header files that are from an
imported project are part of the interface of the imported project. If this check
fails, the compilation is invalidated and the compilation artifacts (dependency,
object and switches files) are deleted.

Example:
project Prj is
for Languages use ("Ada", "C");
for Interfaces use ("pkg.ads", "toto.h");
end Prj;

If a source from a project importing project Prj imports sources from Prj other
than package Pkg or includes header files from Prj other than " toto.h", then its
compilation will be invalidated.

3.6 Post-Compilation Phase

To be provided in a subsequent version of the document.

3.7 Linking Phase

To be provided in a subsequent version of the document.

25

GPRbuild User's Guide

26

Chapter 4: Cleaning up with GPRclean

4 Cleaning up with GPRclean

The GPRclean tool removes the files created by GPRbuild. At a minimum, to
invoke GPRclean you must specify a main project file in a command such as
gprclean proj.gpr or gprclean -P proj.gpr

Examples of invocation of GPRclean:

gprclean -r prjl.gpr
gprclean -c -P prj2.gpr

4.1 Switches for GPRclean
The switches for GPRclean are:

‘--config=<main config project file name> > : Specify the configuration
project file name

‘--autoconf=<config project file name>

This specifies a configuration project file name that already exists or will be
created automatically. Option ‘--autoconf= ’ cannot be specified more than
once. If the configuration project file specified with ‘--autoconf= ’ exists,
then it is used. Otherwise, GPRconfig is invoked to create it automatically.

c’: Only delete compiler-generated files. Do not delete executables and
libraries.

>

“f > : Force deletions of unwritable files

“-F’: Display full project path name in brief error messages

“h’: Display this message

“n’: Do not delete files, only list files to delete

“P<proj> ’: Use Project File <proj>.

-q’: Be quiet/terse. There is no output, except to report problems.

“r > : (recursive) Clean all projects referenced by the main project directly
or indirectly. Without this switch, GPRclean only cleans the main project.

“v’: Verbose mode
“vPx ’: Specify verbosity when parsing Project Files. x = 0 (default), 1 or 2.
“Xnm=val ’: Specify an external reference for Project Files.

27

GPRbuild User's Guide

28

Chapter 5: Configuring with GPRconfig

5 Configuring with GPRconfig

5.1 Using GPRconfig

5.1.1 Description

The GPRconfig tool helps you generate the configuration files for GPRbuild. It
automatically detects the available compilers on your system and, after you
have selected the one needed for your application, it generates the proper con-
figuration file.

S general, you will not launch GPRconfig explicitly. Instead,
it is used implicitly by GPRbuild through the use of --config and
--autoconf switches

5.1.2 Command line arguments
GPRconfig supports the following command line switches:

2

‘--target=platform
This switch indicates the target computer on which your application
will be run. It is mostly useful for cross configurations. Examples
include ‘ppc-elf ’, ‘ppc-vx6-windows . It can also be used in native
configurations and is useful when the same machine can run dif-
ferent kind of compilers such as mingw32 and cygwin on Windows
or x86-32 and x86-64 on GNU Linux. Since different compilers will
often return a different name for those targets, GPRconfig has an
extensive knowledge of which targets are compatible, and will for ex-
ample accept x86-linux ’ as an alias for ‘i686-pc-linux-gnu ’. The
default target is the machine on which GPRconfig is run.

If you enter the special target ‘all ’, then all compilers found on the
PATHwill be displayed.

‘--show-targets
As mentioned above, GPRconfig knows which targets are compat-
ible. You can use this switch to find the list of targets that are
compatible with --target

b

‘--config=language[,version[,runtime[,path[,name]]]]
The intent of this switch is to preselect one or more compilers di-
rectly from the command line. This switch takes several optional
arguments, which you can omit simply by passing the empty string.
When omitted, the arguments will be computed automatically by
GPRconfig.

29

GPRbuild User's Guide

‘-patch ’

b

‘o file

‘--db directory

(__d b_ b

30

In general, only ‘language ’ needs to be specified, and the first com-
piler on the PATHthat can compile this language will be selected. As
an example, for a multi-language application programmed in C and
Ada, the command line would be:

--config=Ada --config=C

‘path ’ is the directory that contains the compiler executable, for
instance ‘usr/bin ’ (and not the installation prefix ‘usr °).

‘name’ should be one of the compiler names defined in the GPRconfig
knowledge base. The list of supported names can be found in the
output of “-h’, and includes ‘GNAT, ‘GCC,. ... This name is generally
not needed, but can be used to distinguish among several compilers
that could match the other arguments of --config .

gprconfig --config Ada,,,/usr/bin # automatic parameters

gprconfig --config C,,,/usr/bin,GCC # automatic version
This switch is also the only possibility to include in your project
some languages that are not associated with a compiler. This is
sometimes useful especially when you are using environments like
GPS that support project files. For instance, if you select " Project
file" as a language, the files matching the “gpr ’ extension will be
shown in the editor, although they of course play no role for gprbuild
itself.

If this switch is specified, GPRconfig automatically selects the first
compiler matching each of the --config = switches, and generates
the configuration file immediately. It will not display an interactive
menu.

This specifies the name of the configuration file that will be gener-
ated. If this switch is not specified, a default file is generated in the
installation directory of GPRbuild (assuming you have write access
to that directory), so that it is automatically picked up by GPRbuild
later on. If you select a different output file, you will need to specify
it to GPRbuild.

3

Indicates another directory that should be parsed for GPRconfig’s
knowledge base. Most of the time this is only useful if you are
creating your own XML description files locally. The second version
of the switch prevents GPRconfig from reading its default knowledge
base.

Generates a brief help message listing all GPRconfig switches and
the default value for their arguments. This includes the location of
the knowledge base, the default target,. . .

Chapter 5: Configuring with GPRconfig

5.1.3 Interactive use

When you launch GPRconfig, it first searches for all compilers it can find on
your PATH that match the target specified by ‘--target ’. It is recommended,
although not required, that you place the compilers that you expect to use for
your application in your PATHbefore you launch gprconfig , since that simplifies
the setup.

GPRconfig then displays the list of all the compilers it has found, along with
the language they can compile, the run-time they use (when applicable),. . .. It
then waits for you to select one of the compilers. This list is sorted by language,
then by order in the PATHenvironment variable (so that compilers that you are
more likely to use appear first), then by run-time names and finally by version
of the compiler. Thus the first compiler for any language is most likely the one
you want to use.

You make a selection by entering the letter that appears on the line for each
compiler (be aware that this letter is case sensitive). If the compiler was already
selected, it is deselected.

A filtered list of compilers is then displayed: only compilers that target the
same platform as the selected compiler are now shown. GPRconfig then checks
whether it is possible to link sources compiled with the selected compiler and
each of the remaining compilers; when linking is not possible, the compiler is
not displayed. Likewise, all compilers for the same language are hidden, so that
you can only select one compiler per language.

As an example, if you need to compile your application with several C compil-
ers, you should create another language, for instance called C2, for that purpose.
That will give you the flexibility to indicate in the project files which compiler
should be used for which sources.

The goal of this filtering is to make it more obvious whether you have a good
chance of being able to link. There is however no guarantee that GPRconfig will
know for certain how to link any combination of the remaining compilers.

You can select as many compilers as are needed by your application. Once
you have finished selecting the compilers, select), and GPRconfig will generate
the configuration file.

5.2 The GPRconfig knowledge base

GPRconfig itself has no hard-coded knowledge of compilers. Thus there is no
need to recompile a new version of GPRconfig when a new compiler is dis-
tributed.

/5! The role and format of the knowledge base are irrelevant for most
users of GPRconfig, and are only needed when you need to add support

31

GPRbuild User's Guide

for new compilers. You can skip this section if you only want to learn
how to use GPRconfig.

All knowledge of compilers is embedded in a set of XML files called the know!-
edge base. Users can easily contribute to this general knowledge base, and have
GPRconfig immediately take advantage of any new data.
The knowledge base contains various kinds of information:
e Compiler description

When it is run interactively, GPRconfig searches the user’s PATHfor known
compilers, and tries to deduce their configuration (version, supported lan-
guages, supported targets, run-times, ...). From the knowledge base
GPRconfig knows how to extract the relevant information about a compiler.

This step is optional, since a user can also enter all the information manu-
ally. However, it is recommended that the knowledge base explicitly list its
known compilers, to make configuration easier for end users.

e Specific compilation switches

When a compiler is used, depending on its version, target, run-time,. . .,
some specific command line switches might have to be supplied. The knowl-
edge base is a good place to store such information.

For instance, with the GNAT compiler, using the soft-float runtime should
force gprbuild to use the ‘-msoft-float ’ compilation switch.

e Linker options

Linking a multi-language application often has some subtleties, and typi-
cally requires specific linker switches. These switches depend on the list of
languages, the list of compilers,. . ..

e Unsupported compiler mix

It is sometimes not possible to link together code compiled with two par-
ticular compilers. The knowledge base should store this information, so
that end users are informed immediately when attempting to use such a
compiler combination.

The end of this section will describe in more detail the format of this knowledge
base, so that you can add your own information and have GPRconfig advantage
of it.

5.2.1 General file format

The knowledge base is implemented as a set of XML files. None of these files has
a special name, nor a special role. Instead, the user can freely create new files,
and put them in the knowledge base directory, to contribute new knowledge.

The location of the knowledge base is ‘$prefix/share/gprconfig ’. where
‘$prefix ’ is the directory in which GPRconfig was installed. Any file with

32

Chapter 5: Configuring with GPRconfig

extension ‘.xml ’in this directory will be parsed automatically by GPRconfig at
startup.

All files must have the following format:

<?7xml version="1.0">
<gprconfig>

;)éprconfig>
The root tag must be <gprconfig>
The remaining sections in this chapter will list the valid XML tags that can

be used to replace the “...” code above. These tags can either all be placed in a
single XML files, or split across several files.

5.2.2 Compiler description

One of the XML tags that can be specified as a child of <gprconfig> is
<compiler_description> . This node and its children describe one of the com-
pilers known to GPRconfig. The tool uses them when it initially looks for all
compilers known on the user’s PATHenvironment variable.

This is optional information, but simplifies the use of GPRconfig, since the
user is then able to omit some parameters from the ‘-config ’ command line
argument, and have them automatically computed.

The <compiler_description> node doesn’t accept any XML attribute. How-
ever, it accepts a number of child tags that explain how to query the various
attributes of the compiler. The child tags are evaluated (if necessary) in the
same order as they are documented below.

<name> This tag contains a simple string, which is the name of the compiler.
This name must be unique across all the configuration files, and is
used to identify that compiler_description node.
<compiler_description>
<name>GNAT</name>
</compiler_description>

<executable>
This tag contains a string, which is the name of an executable to
search for on the PATH. Examples are ‘gnatls ’, ‘gcc’,. . .

In some cases, the tools have a common suffix, but a prefix that
might depend on the target. For instance, GNAT uses ‘gnatmake ’ for
native platforms, but ‘powerpc-wrs-vxworks-gnatmake > for cross-
compilers to VxWorks. Most of the compiler description is the same,
however. For such cases, the value of the executable node is con-
sidered as beginning a regular expression. The tag also accepts
an attribute prefix , which is an integer indicating the parenthesis

33

GPRbuild User's Guide

<target>

<version>

group that contains the prefix. In the following example, you ob-
tain the version of the GNAT compiler by running either gnatls or
powerpc-wrs-vxworks-gnatls , depending on the name of the exe-
cutable that was found.

The regular expression needs to match the whole name of the file,
i.e. it contains an implicit “* ” at the start, and an implicit “$” at the
end. Therefore if you specify ‘*gnatmake ’ as the regexp, it will not
match ‘gnatmake-debug .
A special case is when this node is empty (but it must be specified!).
In such a case, you must also specify the language (see <language>
below) as a simple string. It is then assumed that the specified
language does not require a compiler. In the configurations file
(see (undefined) [Configurations], page (undefined)), you can test
whether that language was specified on the command line by using
a filter such as
<compilers>
<compiler language="name"/>
</compilers>
<executable prefix="1">(powerpc-wrs-vxworks-)7gnatmake</executable>
<version><external>${PREFIX}gnatls -v</external></version>

GPRconfig searches in all directories listed on the PATH for such
an executable. When one is found, the rest of the <compiler_
description> children are checked to know whether the compiler
is valid. The directory in which the executable was found becomes
the “current directory” for the remaining XML children.

This node indicates how to query the target architecture for the
compiler. See (undefined) [GPRconfig external values], page (unde-
fined) for valid children.

This tag contains any of the nodes defined in (undefined) [GPRconfig
external values], page (undefined) below. It shows how to query the
version number of the compiler. If the version cannot be found, the
executable will not be listed in the list of compilers.

<variable name="varname">

34

This node will define a user variable which may be later referenced.
The variables are evaluated just after the version but before the
languages and the runtimes nodes. See (undefined) [GPRconfig
external values], page (undefined) below for valid children of this
node. If the evaluation of this variable is empty then the compiler
is considered as invalid.

Chapter 5: Configuring with GPRconfig

<languages>
This node indicates how to query the list of languages. See (unde-
fined) [GPRconfig external values], page (undefined) below for valid
children of this node.

The value returned by the system will be split into words. As a
result, if the returned value is “ada,c,c++”, there are three languages
supported by the compiler (and three entries are added to the menu
when using GPRconfig interactively).

If the value is a simple string, the words must be comma-separated,
so that you can specify languages whose name include spaces. How-
ever, if the actual value is computed from the result of a command,
the words can also be space-separated, to be compatible with more
tools.

<runtimes>
This node indicates how to query the list of supported runtimes
for the compiler. See (undefined) [GPRconfig external values],
page (undefined) below for valid children. The returned value is
split into words as for <languages> .

5.2.2.1 External values

A number of the XML nodes described above can contain one or more children,
and specify how to query a value from an executable. Here is the list of valid
contents for these nodes. The <directory> and <external> children can be
repeated multiple times, and the <filter> and <must_match> nodes will be ap-
plied to each of these. The final value of the external value is the concatenation
of the computation for each of the <directory> and <external> nodes.

e A simple string
A simple string given in the node indicates a constant. For instance, the
list of supported languages might be defined as:

<compiler_description>
<name>GNAT</name>
<executable>gnatmake</executable>
<languages>Ada</languages>
</compiler_description>

for the GNAT compiler, since this is an Ada-only compiler.
Variables can be referenced in simple strings.
e <getenv name="variable" />

Ifthe contents of the node is an <getenv> child, the value of the environment
variable variable is returned. If the variable is not defined, this is an error
and the compiler is ignored.

35

GPRbuild User's Guide

<compiler_description>

<name>GCC-WRS</name>

<executable prefix="1">cc(arm|pentium)</executable>
<version>

<getenv name="WIND_BASE" />

</version>

</compile_description>

e <external>command</external>

36

If the contents of the node is an <external> child, this indicates that a
command should be run on the system. When the command is run, the
current directory (i.e., the one that contains the executable found through
the <executable> node, is placed first on the PATH The output of the com-
mand is returned and may be later filtered. The command is not executed
through a shell; therefore you cannot use output redirection, pipes, or other
advanced features.

For instance, extracting the target processor from gcc can be done with:

<version>
<external>gcc -dumpmachine</external>
</version>

Since the PATHhas been modified, we know that the gcc command that is
executed is the one from the same directory as the <external> node.

Variables are substituted in command
<grep regexp="regexp" group="0" />

This node must come after the previously described ones. It is used to
further filter the output. The previous output is matched against the reg-
ular expression regexp and the parenthesis group specified by group is
returned. By default, group is 0, which indicates the whole output of the
command.

For instance, extracting the version number from gcc can be done with:

<version>

<external>gcc -v</external>

<grep regexp=""gcc version (\S+)" group="1" />
</version>

<directory group="0">regexp</directory>

If the contents of the node is a <directory> child, this indicates that
GPRconfig should find all the files matching the regular expression. Regexp
is a path relative to the directory that contains the <executable> file, and
should use unix directory separators (ie ’/’), since the actual directory will
be converted into this format before the match, for system independence of
the knowledge base.

Chapter 5: Configuring with GPRconfig

The group attribute indicates which parenthesis group should be returned.
It defaults to 0 which indicates the whole matched path. If this attribute is
a string rather than an integer, then it is the value returned.

regexp canbe any valid regular expression. This will only match a directory
name, not a subdirectory. Remember to quote special characters, including

{3

., if you do not mean to use a regexp.

For instance, finding the list of supported runtimes for the GNAT compiler
is done with:

<runtimes>

<directory group="1">

\.\./1lib/gcc/${TARGET}/.*/rts-(.*)/adainclude

</directory>

<directory group="default">

\.\./1lib/gcc/${TARGET}/.*/adainclude

</directory>

</runtimes>
Note the second node, which matches the default run-time, and displays it
as such.

<filter>valuel,value2,...<ffilter>

This node must come after one the previously described ones. It is used
to further filter the output. The previous output is split into words (it is
considered as a comma-separated or space-separated list of words), and

only those words in ‘valuel ’, ‘value2 ’,... are kept.

For instance, the gcc compiler will return a variety of supported languages,
including “ada”. If we do not want to use it as an Ada compiler we can
specify:

<languages>

<external regexp="languages=(\S+)" group="1">gcc -v</external>

<filter>c,c++,fortran</filter>

</languages>

<must_match>regexp</must_match>

If this node is present, then the filtered output is compared with the spec-
ified regular expression. If no match is found, then the executable is not
stored in the list of known compilers.

For instance, if you want to have a <compiler_description> tag specific
to an older version of GCC, you could write:

<version>

<external regexp="gcc version (\S+)"

group="1">gcc -v </external>

<must_match>2.8.1</must_match>

</version>

Other versions of gce will not match this <compiler_description> node.

37

GPRbuild User's Guide

5.2.2.2 Variable Substitution

The various compiler attributes defined above are made available as variables
in the rest of the XML files. Each of these variable can be used in the value of
the various nodes (for instance in <directory>), and in the configurations (see
(undefined) [Configuration], page (undefined)).

A variable is referenced by ${name} where nameis either a user variable or a
predefined variable. An alternate reference is $name where name is a sequence
of alpha numeric characters or underscores. Finally $$ is replaced by a simple
$.

User variables are defined by <variable> nodes and may override predefined
variables. To avoid a possible override use lower case names.

Predefined variables are always in upper case. Here is the list of predefined
variables

${EXEG isthe name of the executable that was found through <executable>
It only contains the basename, not the directory information.

${HOST isreplaced by the architecture of the host on which GPRconfig is run-
ning. This name is hard-coded in GPRconfig itself, and is generated
by configure when GPRconfig was built.

${ TARGEF
is replaced by the target architecture of the compiler, as returned by
the <target> node. This is of course not available when computing
the target itself.

${ VERSION
is replaced by the version of the compiler. This is not available when
computing the target or, of course, the version itself.

${ PREFIX}
is replaced by the prefix to the executable name, as defined by the
<executable> node.

${PATH is the current directory, i.e. the one containing the executable found
through <executable> . It always ends with a directory separator.

${ GPRCONFIG_PREFIX
is the directory in which GPRconfig was in-
stalled (e.g “/usr/local/" > if the executable is
“fusr/local/bin/gprconfig” ’ This directory always ends
with a directory separator.

${ LANGUAGE
is the language supported by the compiler, always folded to lower-
case

38

Chapter 5: Configuring with GPRconfig

${ RUNTIMB

${ RUNTIME_DIR
This string will always be substituted by the empty string when the
value of the external value is computed. These are special strings
used when substituting text in configuration chunks.

RUNTIME_DIRalways end with a directory separator.

If a variable is not defined, an error message is issued and the variable is
substituted by an empty string.

5.2.3 Configurations

The second type of information stored in the knowledge base are the chunks of
gprbuild configuration files.

Each of these chunks is also placed in an XML node that provides optional
filters. If all the filters match, then the chunk will be merged with other similar
chunks and placed in the final configuration file that is generated by GPRconfig.

For instance, it is possible to indicate that a chunk should only be included
if the GNAT compiler with the soft-float runtime is used. Such a chunk can
for instance be used to ensure that Ada sources are always compiled with the
-msoft-float command line switch.

GPRconfig does not perform sophisticated merging of chunks. It simply

groups packages together. For example, if the two chunks are:

chunk1:

package Language_Processing is

for Attrl use ("foo");

end Language_Processing;

chunk?2:

package Language_Processing is

for Attrl use ("bar");

end Language_Processing;

Then the final configuration file will look like:

package Language_Processing is
for Attrl use ("foo");

for Attrl use ("bar");

end Language_Processing;

As a result, to avoid conflicts, it is recommended that the chunks be written
so that they easily collaborate together. For instance, to obtain something
equivalent to

package Language_Processing is

for Attrl use ("foo", "bar");

end Language_Processing;

the two chunks above should be written as:

39

GPRbuild User's Guide

chunkl:

package Language_Processing is

for Attrl use Language_Processing’Attrl & ("foo");
end Language_Processing;

chunk2:

package Language_Processing is

for Attrl use Language_Processing’Attrl & ("bar");
end Language_Processing;

The chunks are described in a <configuration> XML node. The mostimportant
child of such a node is <config> , which contains the chunk itself. For instance,
you would write:

<configuration>

... list of filters, see below

<config>

package Language_Processing is

for Attrl use Language_Processing’Attrl & ("foo");
end Language_Processing;

</config>

</configuration>

If <config> is an empty node (i.e., ‘<config/> ’ or ‘<config></config> ’) was
used, then the combination of selected compilers will be reported as invalid, in
the sense that code compiled with these compilers cannot be linked together.
As a result, GPRconfig will not create the configuration file.

The special variables (see (undefined) [GPRconfig variable substitution],
page (undefined)) are also substituted in the chunk. That allows you to compute
some attributes of the compiler (its path, the runtime,. . .), and use them when
generating the chunks.

The filters themselves are of course defined through XML tags, and can be
any of:

<compilers negate="false">
This filter contains a list of <compiler> children. The <compilers>
filter matches if any of its children match. However, you can have
several <compilers> filters, in which case they must all match.
This can be used to include linker switches chunks. For instance,
the following code would be used to describe the linker switches to
use when GNAT 5.05 or 5.04 is used in addition to g++ 3.4.1:

40

Chapter 5: Configuring with GPRconfig

<configuration>

<compilers>

<compiler name="GNAT" version="5.04" />
<compiler name="GNAT" version="5.05" />
</compilers>

<compilers>

<compiler name="G++" version="3.4.1" />
</compilers>

;)éonfiguration>
If the attribute negate is ‘true ’, then the meaning of this filter is
inverted, and it will match if none of its children matches.

The format of the <compiler> is the following:

<compiler name='"name" version="..."

runtime="..." language="..." />
The name and language attributes, when specified, match the corre-
sponding attributes used in the <compiler_description> children.
All other attributes are regular expressions, which are matched
against the corresponding selected compilers. When an attribute
is not specified, it will always match. Matching is done in a case-
insensitive manner.

For instance, to check a GNAT compiler in the 5.x family, use:

<compiler name="GNAT" version="5.\d+" />

<hosts negate="false">
This filter contains a list of <host> children. It matches when any
of its children matches. You can specify only one <hosts> node.
The format of <host> is a node with a single mandatory attribute
name, which is a regexp matched against the architecture on which
GPRconfig is running. The name of the architecture was computed
by configure ~ when GPRconfig was built.

If the negate attribute is ‘true ’, then the meaning of this filter is
inverted, and it will match when none of its children matches.

For instance, to active a chunk only if the compiler is running on an
intel linux machine, use:

<hosts>

<host name="i.86-.*-linux(-gnu)?" />

</hosts>

<targets negate="false">
This filter contains a list of <target> children. It behaves exactly
like <hosts> , but matches against the architecture targeted by the
selected compilers. For instance, to activate a chunk only when the
code is targeted for linux, use:

41

GPRbuild User's Guide

If the negate attribute is ‘true ’, then the meaning of this filter is
inverted, and it will match when none of its children matches.

<targets>
<target name="i.86-.*-linux(-gnu)?" />
</targets>

42

Chapter 6: Configuration File Reference

6 Configuration File Reference

GPRbuild needs to have a configuration file to know the different characteristics
of the toolchains that can be used to compile sources and build libraries and
executables.

A configuration file is a special kind of project file: it uses the same syntax
as a standard project file. Attributes in the configuration file define the config-
uration. Some of these attributes have a special meaning in the configuration.

The default name of the configuration file, when not specified to GPRbuild
by switches —config= or —autoconf=is ‘default.cgpr ~ ’. Although the name of the
configuration file can be any valid file name, it is recommended that its suffix
be ‘.cgpr ’ (for Configuration GNAT Project), so that it cannot be confused with
a standard project file which has the suffix ‘.gpr .

When ‘default.cgpr ’ cannot be found in the configuration project path,
GPRbuild invokes GPRconfig to create a configuration file.

In the following description of the attributes, when an attribute is an
associative array indexed by the language name, for example Spec_Suffix
(<language>) , then the name of the language is case insensitive. For example,
both C and c are allowed.

Any attribute may appear in a configuration project file. All attributes in
a configuration project file are inherited by each user project file in the project
tree. However, usually only the attributes listed below make sense in the
configuration project file.

6.1 Project Level Attributes

6.1.1 General Attributes

e Default_Language

Specifies the name of the language of the immediate sources of a project
when attribute Languages is not declared in the project. If attribute
Default_Language is not declared in the configuration file, then each user
project file in the project tree must have an attribute Languages declared,
unless it extends another project. Example:

for Default_Language use "ada";

e Run_Path_Option

Specifies a “run path option”; i.e., an option to use when linking an ex-
ecutable or a shared library to indicate the path where to look for other
libraries. The value of this attribute is a string list. When linking an ex-
ecutable or a shared library, the search path is concatenated with the last
string in the list, which may be an empty string. Example:

43

GPRbuild User's Guide

for Run_Path_Option wuse ("-Wl,-rpath,");

e Toolchain_Version (<language>)

Specifies a version for a toolchain, as a single string. This toolchain version
is passed to the library builder. Example:

for Toolchain_Version ("Ada") use "GNAT 6.1";

This attribute is used by GPRbind to decide on the names of the shared
GNAT runtime libraries.

Toolchain_Description (<language>)

Specifies as a single string a description of a toolchain. This attribute is
not directly used by GPRbuild or its auxiliary tools (GPRbind and GPRIib)
but may be used by other tools, for example GPS. Example:

for Toolchain_Description ("C") use "gcc version 4.1.3 20070425";

6.1.2 General Library Related Attributes
e Library_Support

Specifies the level of support for library project. If this attribute is not
specified, then library projects are not supported. The only potential values
for this attribute are none, static_only and full . Example:

for Library_Support use "full";

e Library_Builder

Specifies the name of the executable for the library builder. Example:
for Library_Builder use "/.../gprlib";

6.1.3 Archive Related Attributes
e Archive_Builder

Specifies the name of the executable of the archive builder with the mini-
mum options, if any. Example:

for Archive_Builder use ("ar", "cr");

e Archive_Indexer

Specifies the name of the executable of the archive indexer with the min-
imum options, if any. If this attribute is not specified, then there is no
archive indexer. Example:

for Archive_Indexer use ("ranlib");

e Archive_Suffix

44

Specifies the suffix of the archives. If this attribute is not specified, then
the suffix of the archives is defaulted to ‘.a’. Example:

for Archive_Suffix use ".olb"; -- for VMS

Chapter 6: Configuration File Reference

Library_Partial_Linker
Specifies the name of the executable of the partial linker with the options
to be used, if any. If this attribute is not specified, then there is no partial
linking. Example:

for Library_Partial_Linker use ("gcc", "-nostdlib", "-Wl,-r", "-o");

6.1.4 Shared Library Related Attributes

Shared_Library_Prefix
Specifies the prefix of the file names of shared libraries. When this attribute
is not specified, the prefix is lib . Example:

for Shared_Library_Prefix use ""; -- for Windows, if needed
Shared_Library_Suffix
Specifies the suffix of the file names of shared libraries. When this attribute
is not specified, the suffix is “so ’. Example:

for Shared_Library_Suffix use ".dll"; -- for Windows
Symbolic_Link_Supported
Specifies if symbolic links are supported by the platforms. The possible
values of this attribute are "false” (the default) and "true” . When this
attribute is not specified, symbolic links are not supported.

for Symbolic_Link_Supported use "true";
Library_Major_Minor_ID_Supported
Specifies if major and minor IDs are supported for shared libraries. The pos-
sible values of this attribute are "false” (the default) and "true” . When
this attribute is not specified, major and minor IDs are not supported.

for Library_Major_Minor_ID_Supported use "True";
Library_Auto_Init_Supported
Specifies if library auto initialization is supported. The possible values of
this attribute are "false” (the default) and "true" . When this attribute is
not specified, library auto initialization is not supported.

for Library_Auto_Init_Supported use "true";
Shared_Library_Minimum_Switches
Specifies the minimum options to be used when building shared library.
These options are put in the appropriate section in the library exchange file
when the library builder is invoked. Example:

for Shared_Library_Minimum_Switches use ("-shared");
Library_Version_Switches
Specifies the option or options to be used when a library version is used.
These options are put in the appropriate section in the library exchange file
when the library builder is invoked. Example:

45

GPRbuild User's Guide

for Library_Version_Switches use ("-Wl,-soname,");

e Runtime_Library_Dir (<language>)

Specifies the directory for the runtime libraries for the language. Example:
for Runtime_Library_Dir ("Ada") use "/path/to/adalib";
This attribute is used by GPRIib to link shared libraries with Ada code.

6.2 Package Naming

Attributes in package Naming of a configuration file specify defaults. These
attributes may be used in user project files to replace these defaults.

The following attributes usually appear in package Naming of a configuration
file:

e Spec_Suffix (<language>)

46

Specifies the default suffix for a “spec” or header file. Examples:
for Spec_Suffix ("Ada") use ".ads";
for Spec_Suffix ("C") wuse ".h";
for Spec_Suffix ("C++") use ".hh";

Body_Suffix (<language>)

Specifies the default suffix for a “body” or a source file. Examples:

for Body_Suffix ("Ada") use ".adb";
for Body_Suffix ("C") wuse ".c";
for Body_Suffix ("C++") use ".cpp";

Separate_Suffix

Specifies the suffix for a subunit source file (separate) in Ada. If attribute
Separate_Suffix is not specified, then the default suffix of subunit source
files is the same as the default suffix for body source files. Example:

for Separate_Suffix use ".sep";
Casing
Specifies the casing of spec and body files in a unit based language (such
as Ada) to know how to map a unit name to its file name. The values for
this attribute may only be "lowercase" , "UPPERCASE"and "Mixedcase"
The default, when attribute Casing is not specified is lower case. This
attribute rarely needs to be specified, since on platforms where file names
are not case sensitive (such as Windows or VMS) the default (lower case)
will suffice.
Dot_Replacement
Specifies the string to replace a dot (“.”) in unit names of a unit based lan-
guage (such as Ada) to obtain its file name. If there is any unit based lan-
guage in the configuration, attribute Dot _Replacement must be declared.
Example:

for Dot_Replacement use "-";

Chapter 6: Configuration File Reference

6.3 Package Builder

o Executable_Suffix

Specifies the default executable suffix. If no attribute Executable_Suffix
is declared, then the default executable suffix for the host platform is used.
Example:

for Executable_Suffix use ".exe";

6.4 Package Compiler

6.4.1 General Compilation Attributes
e Driver (<language>)

Specifies the name of the executable for the compiler of a language. The
single string value of this attribute may be an absolute path or a relative
path. If relative, then the execution path is searched. Specifying the empty
string for this attribute indicates that there is no compiler for the language.
Examples:

for Driver ("C++") use "g++";
for Driver ("Ada") use "/.../bin/gcc";
for Driver ("Project file") use "";

e Required_Switches (<language>)
Specifies the minimum options that must be used when invoking the com-
piler of a language. Examples:

for Required_Switches ("C") use ("-c", "-x", "c");
for Required_Switches ("Ada") use ("-c", "-x", "ada", "-gnatA");

e PIC_Option (<language>)
Specifies the option or options that must be used when compiling a source
of a language to be put in a shared library. Example:
for PIC_Option ("C") use ("-fPIC");

6.4.2 Mapping File Related Attributes
e Mapping_File_Switches (<language>)

Specifies the switch or switches to be used to specify a mapping file to the
compiler. When attribute Mapping_File_Switches is not declared, then no
mapping file is specified to the compiler. The value of this attribute is a
string list. The path name of the mapping file is concatenated with the last
string in the string list, which may be empty. Example:

for Mapping_File_Switches ("Ada") use ("-gnatem=");

47

GPRbuild User's Guide

e Mapping_Spec_Suffix (<language>)

Specifies, for unit based languages that support mapping files, the suffix
in the mapping file that needs to be added to the unit name for specs.
Example:

for Mapping_Spec_Suffix ("Ada") use "Ys";
Mapping_Body_Suffix (<language>)
Specifies, for unit based languages that support mapping files, the suffix
in the mapping file that needs to be added to the unit name for bodies.
Example:

for Mapping_Spec_Suffix ("Ada") use "b";

6.4.3 Config File Related Attributes

In the value of config file attributes defined below, there are some placehold-

ers that GPRbuild will replace. These placeholders are:

%u : the unit name

%f : the file name of the source
%s : the spec suffix

%D : the body suffix

%c : the casing

%d : the dot replacement string

Attributes:

e Config_File_Switches (<language>)

48

Specifies the switch or switches to be used to specify a configuration file to
the compiler. When attribute Config_File_Switches is not declared, then
no config file is specified to the compiler. The value of this attribute is a
string list. The path name of the config file is concatenated with the last
string in the string list, which may be empty. Example:

for Config_File_Switches ("Ada") use ("-gnatec=");
Config_Body_File_Name (<language>)
Specifies the line to be put in a config file to indicate the file name of a body.
Example:

for Config_Body_File_Name ("Ada") use

"pragma Source_File_Name_Project (%u, Body_File_Name => ""Jf"");";

Config_Spec_File_Name (<language>)

Specifies the line to be put in a config file to indicate the file name of a spec.
Example:

for Config_Spec_File_Name ("Ada") use
"pragma Source_File_Name_Project (%u, Spec_File_Name => ""Jf"");";

Chapter 6: Configuration File Reference

e Config_Body_File_Name_Pattern (<language>)

Specifies the line to be put in a config file to indicate a body file name
pattern. Example:
for Config_Body_File_Name_Pattern ("Ada") use
"pragma Source_File_Name_Project " &
" (Body_File_Name => ""xJb""," &
" Casing => Jc," &
" Dot_Replacement => ""%d"");";

e Config_Spec_File_Name_Pattern (<language>)

Specifies the line to be put in a config file to indicate a spec file name pattern.
Example:
for Config_Spec_File_Name_Pattern ("Ada") use
"pragma Source_File_Name_Project " &
" (Spec_File_Name => ""xjs""," &
" Casing => %c," &
" Dot_Replacement => ""%d"");";

e Config_File Unique (<language>)

Specifies, for languages that support config files, if several config files may
be indicated to the compiler, or not. This attribute may have only two val-
ues: "true" or "false” (case insensitive). The default, when this attribute
is not specified, is "false" . When the value "true" is specified for this
attribute, GPRbuild will concatenate the config files, if there are more than
one. Example:

for Config File_Unique ("Ada") use "True";

6.4.4 Dependency Related Attributes

There are two dependency-related attributes: Dependency Switches and
Dependency_Driver . If neither of these two attributes are specified for a lan-
guage other than Ada, then the source needs to be (re)compiled if the object file
does not exist or the source file is more recent than the object file or the switch
file.

e Dependency_Switches (<language>)

For languages other than Ada, attribute Dependency_ Switches specifies
the option or options to add to the compiler invocation so that it creates
the dependency file at the same time. The value of attribute Dependency_
Option is a string list. The name of the dependency file is added to the last
string in the list, which may be empty. Example:

for Dependency_Switches ("C") use ("-Wp,-MD,");

With these Dependency_Switches , when compiling ‘file.c ’ the compiler
will be invoked with the option “Wp,-MD file.d ’,

49

GPRbuild User's Guide

e Dependency_Driver (<language>)

Specifies the command and options to create a dependency file for a source.
The full path name of the source is appended to the last string of the string
list value. Example:

for Dependency_Driver ("C") use ("gcc", "-E", "-Wp,-M", "");

Usually, attributes Dependency_Switches and Dependency Driver are not
both specified.

6.4.5 Search Path Related Attributes

e Include_Switches (<language>)

Specifies the option or options to use when invoking the compiler to indicate
that a directory is part of the source search path. The value of this attribute
is a string list. The full path name of the directory is concatenated with the
last string in the string list, which may be empty. Example:

for Include_Switches ("C") use ("-I");
Attribute Include_Switches is ignored if either one of the attributes
Include_Path or Include_Path_File are specified.
Include_Path (<language>)

Specifies the name of an environment variable that is used by the compiler
to get the source search path. The value of the environment variable is the
source search path to be used by the compiler. Example:

for Include_Path ("C") use "CPATH";
for Include_Path ("Ada") use "ADA_INCLUDE_PATH";

Attribute Include_Path is ignored if attribute Include_Path_File is de-
clared for the language.

Include_Path_File (<language>)

Specifies the name of an environment variable that is used by the compiler
to get the source search path. The value of the environment variable is the
path name of a text file that contain the path names of the directories of
the source search path. Example:

for Include_Path_File ("Ada") use "ADA_PRJ_INCLUDE_FILE";

6.5 Package Binder

e Driver (<language>)

50

Specifies the name of the executable of the binder driver. When this at-
tribute is not specified, there is no binder for the language. Example:

for Driver ("Ada") use "/.../gprbind";

Chapter 6: Configuration File Reference

e Required_Switches (<language>)
Specifies the minimum options to be used when invoking the binder driver.
These options are put in the appropriate section in the binder exchange file,
one option per line. Example:
for Required_Switches ("Ada") use ("--prefix=<prefix>");
e Prefix (<language>)
Specifies the prefix to be used in the name of the binder exchange file.
Example:
for Prefix ("C++") use ("c__");
e Objects_Path (<language>)
Specifies the name of an environment variable that is used by the compiler

to get the object search path. The value of the environment variable is the
object search path to be used by the compiler. Example:

for Objects_Path ("Ada") use "ADA_OBJECTS_PATH";
e Objects_Path_File (<language>)

Specifies the name of an environment variable that is used by the compiler
to get the object search path. The value of the environment variable is the
path name of a text file that contain the path names of the directories of
the object search path. Example:

for Objects_Path_File ("Ada") use "ADA_PRJ_OBJECTS_FILE";

6.6 Package Linker

e Driver
Specifies the name of the executable of the default linker. Example:

for Driver use "g++";
e Required_Switches
Specifies the minimum options to be used when invoking the default linker.

51

GPRbuild User's Guide

52

Table of Contents

Introduction.........ccoiiiiiiiiieeennneeeeeeeeeannnnnns 1
1 Guided Tour.......c.ccciiiiiiieeeereennccacencecssnnns 3
1.1 Configurationouiuiiiiiiiii i e e 3

12 First StePS .ot e 4
1.3 SuUbSYStemMIS ..ot 6
1.4 Project EXtensions ...t e 8
1.5 LIbrariesot e e 9
1.6 Scenarios and conditional source files............................... 10

2 Important Concepts......ccovveieiieereneeeeananns 13
3 Building with GPRbuild................cccceva.... 17
3.1 Command Line........ ... e 17
3.2 SWItCheS ... 18
3.3 Initialization....... i 22
3.4 Compilation of one or several sources..............c..ccovvvinienna... 23
3.5 Compilation Phase........... i 23
3.6 Post-Compilation Phase................... .. 25
3.7 Linking Phase...........oiiiiiiiiii i 25

4 Cleaning up with GPRclean....................... 27
4.1 Switchesfor GPRclean. ... 27

5 Configuring with GPRconfig...............cco000.. 29
51 Using GPRconfig...........oiiii i 29
5.1.1 Description.o.uuiiiiir i i 29

5.1.2 Command line arguments.ccoitiiiiiiirennreennann. 29

5.1.3 Interactive use...........cciiiiiiiiiiiii i, 31

5.2 The GPRconfig knowledge base...................cooiiiiii ... 31
52.1 Generalfileformat............... ... 32

5.2.2 Compiler description............ccoouiiiiiiiiiiiiiiieanns 33
5.2.2.1 Externalvalues..............c.ciiiiiiiiiiiiiiiii, 35

5.2.2.2 Variable Substitution................. L 38

5.2.3 Configurations............cciiiiiiiiiii i 39

GPRbuild User's Guide

6 Configuration File Reference...................... 43

6.1 Project Level Attributes.............ccooiiiiiiiiiiii i 43
6.1.1 General Attributes. ... 43
6.1.2 General Library Related Attributes............................ 44
6.1.3 Archive Related Attributes.................l 44
6.1.4 Shared Library Related Attributes............................. 45

6.2 Package Naming.............c.coiiiiiiiiiiiii i, 46

6.3 Package Builder................ i 47

6.4 Package Compiler............oiiiiiiiii 47
6.4.1 General Compilation Attributes............................... 47
6.4.2 Mapping File Related Attributes............................... 47
6.4.3 Config File Related Attributes........................ooa... 48
6.4.4 Dependency Related Attributes................................ 49
6.4.5 Search Path Related Attributes................................ 50

6.5 PackageBinder................. i 50

6.6 Package LInKer...........c.c.oiiiiiiiiii i e 51

ii

	Introduction
	Guided Tour
	Configuration
	First Steps
	Subsystems
	Project Extensions
	Libraries
	Scenarios and conditional source files

	Important Concepts
	Building with GPRbuild
	Command Line
	Switches
	Initialization
	Compilation of one or several sources
	Compilation Phase
	Post-Compilation Phase
	Linking Phase

	Cleaning up with GPRclean
	Switches for GPRclean

	Configuring with GPRconfig
	Using GPRconfig
	Description
	Command line arguments
	Interactive use

	The GPRconfig knowledge base
	General file format
	Compiler description
	External values
	Variable Substitution

	Configurations

	Configuration File Reference
	Project Level Attributes
	General Attributes
	General Library Related Attributes
	Archive Related Attributes
	Shared Library Related Attributes

	Package Naming
	Package Builder
	Package Compiler
	General Compilation Attributes
	Mapping File Related Attributes
	Config File Related Attributes
	Dependency Related Attributes
	Search Path Related Attributes

	Package Binder
	Package Linker

